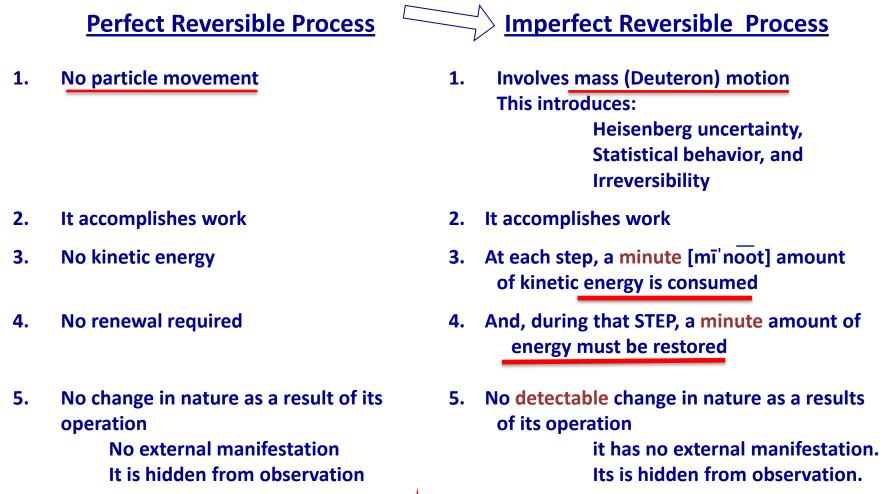
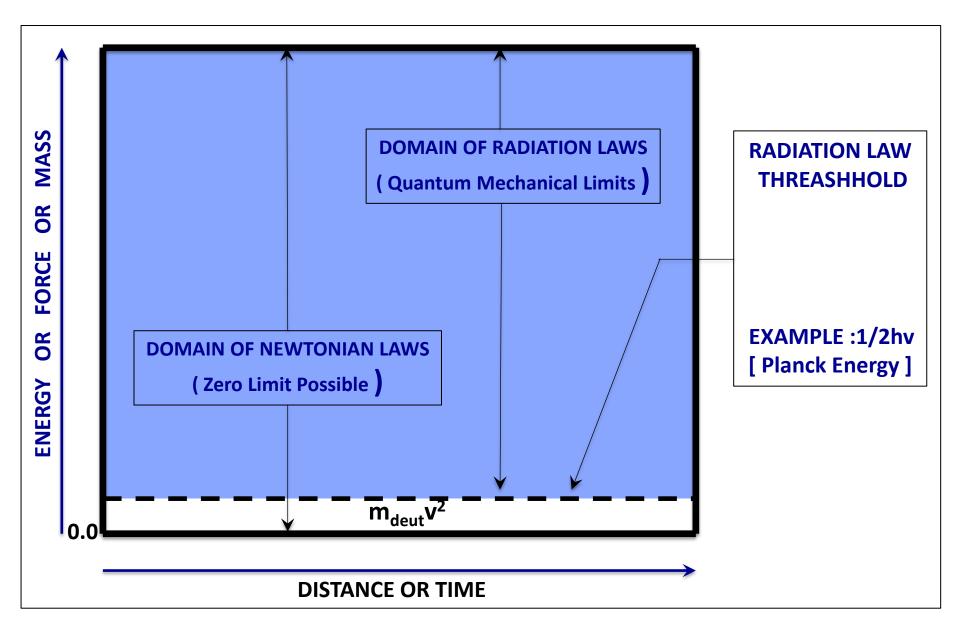

DESIGN AND INITIAL TESTING OF THE LANP COMPUTER MODEL OF THE COLD FUSION PROCESS

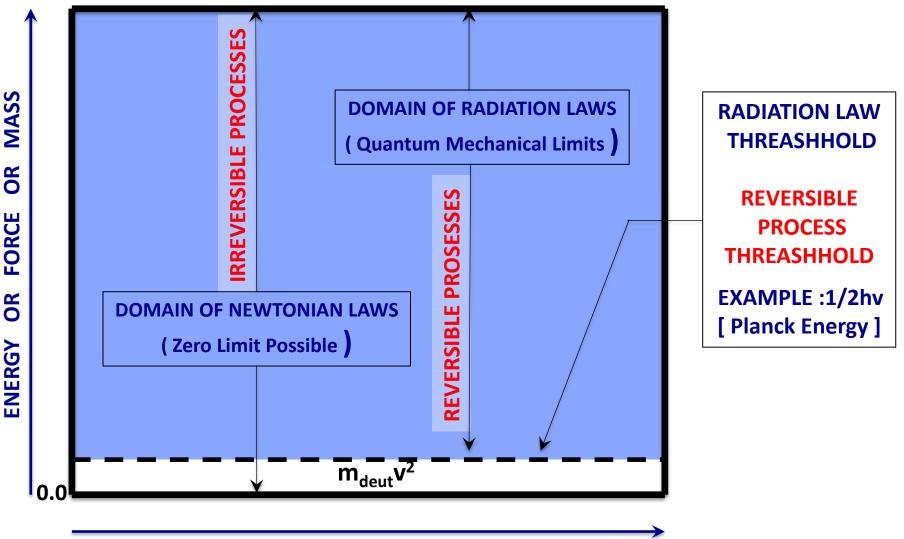
By: Daniel S Szumski, Independent Scholar


An Application of LANP* Theory

* Least Action Nuclear Process [LANP] Theory of Cold Fusion

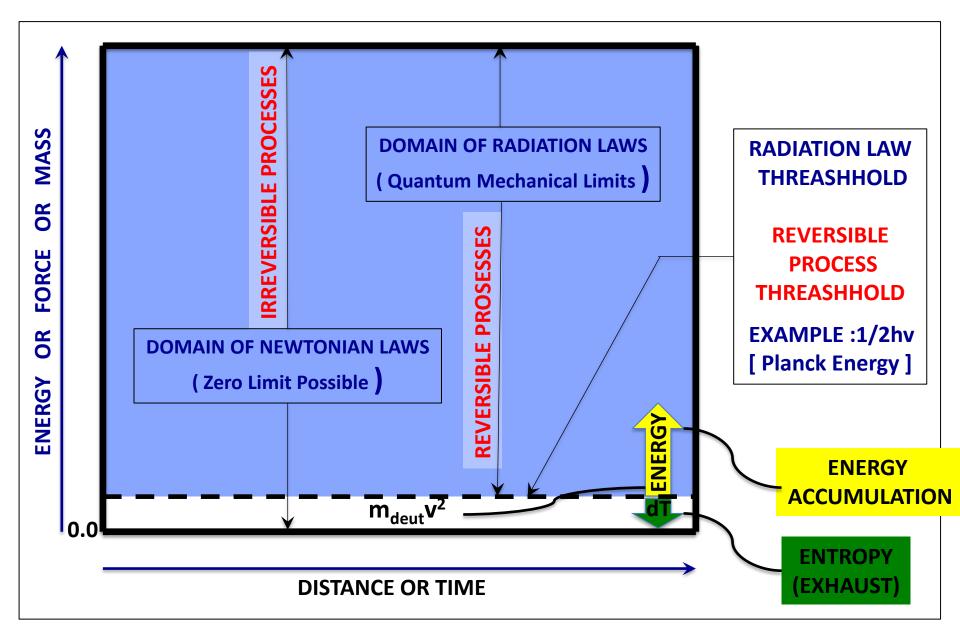
THE LEAST ACTION NUCLEAR PROCESS [LANP] THEORY OF COLD FUSION


THE REVERSIBLE THERMODYNAMIC PROCESS



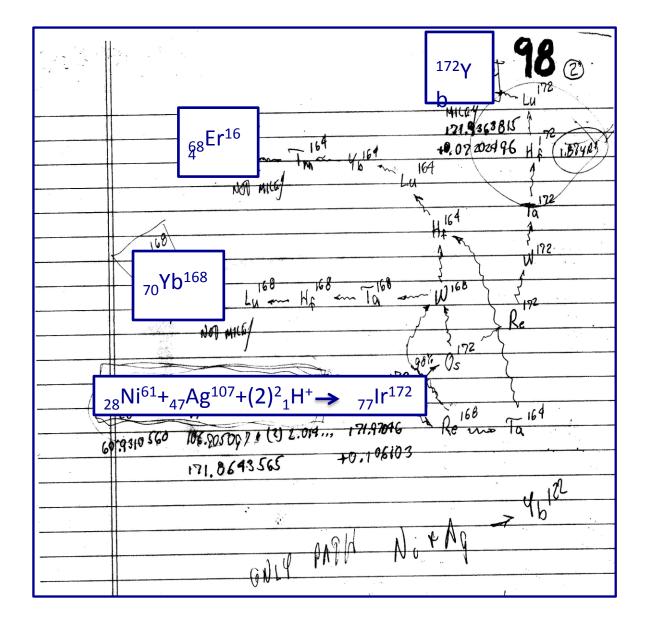
The process is reversible, but not perpetual

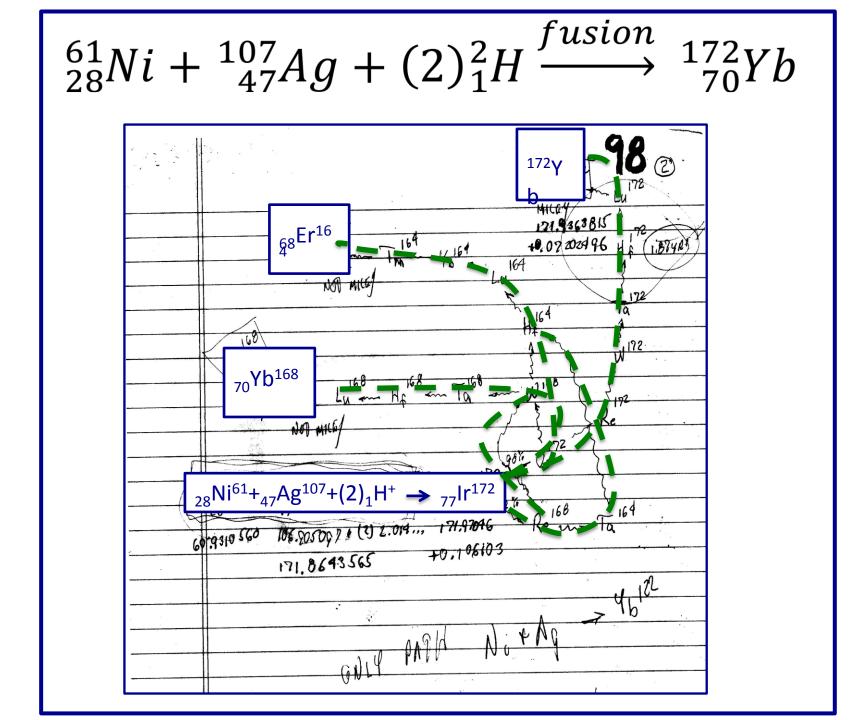
A BACK DOOR TO THE SECOND LAW OF THERMODYNAMICS



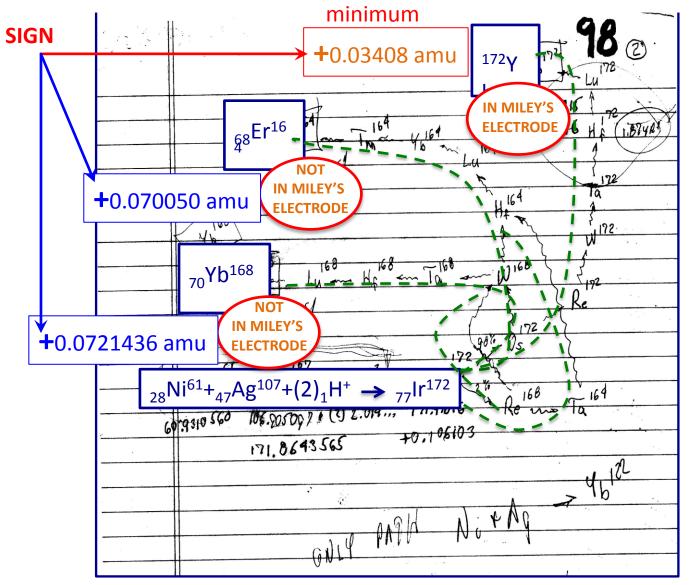
A BACK DOOR TO THE SECOND LAW OF THERMODYNAMICS

DISTANCE OR TIME


A BACK DOOR TO THE SECOND LAW OF THERMODYNAMICS



ANALYSIS OF GEORGE MILEY'S NICKEL TRANSMUTATION DATA


Principle of Least Action – How it works

$${}^{61}_{28}Ni + {}^{107}_{47}Ag + (2){}^{2}_{1}H \xrightarrow{fusion} {}^{172}_{70}Yb$$

 ${}^{61}_{28}Ni + {}^{107}_{47}Ag + (2){}^2_1H \xrightarrow{fusion}$ $^{172}_{70}Yb$

ANALYSIS OF MILEY'S NICKLE ELECTRODE DATA

- 1. The fundamental cold fusion process is <u>neutron production</u> [No LENR ... Deuterium-deuterium fusion?]
- 2. LANP always selects for the smallest energy change.
- **3.** Both positive and negative heat changes occur.
- Five classes of nuclear reactions:

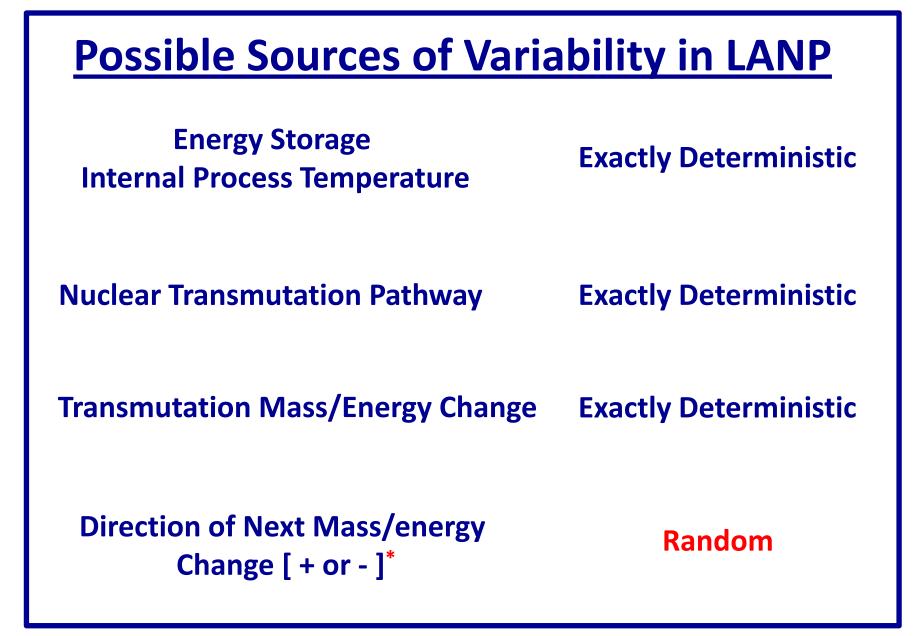
 Deuterons with base metal [Ni, Pd]
 Deuterons with metal impurities [Si, Fe, Mn, Ag, etc]
 Fusion of electrode materials and impurities [Ni+Ag]
 Fission reactions
 Alpha decay reactions yield He-4
- 5. The more deuterons reacting ... the greater the energy change
- 6. Nuclear transmutations occur without regard to half life constraints
- 7. Transmutation products follow the same rules

COLD FUSION EXPERIMENT VARIABILITY <u>&</u> <u>REPRODUCIBILITY</u>

THREE LEVELS OF CAUSE/EFFECT VARIABILITY IN THE COLD FUSION PROCESS

PRIMARY INDEPENDENT VARIABLES

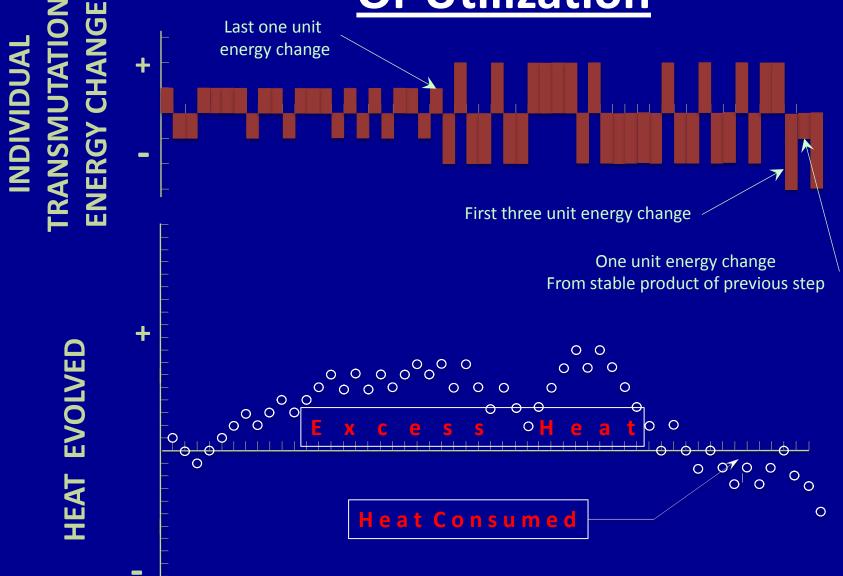
- **1.** Energy storage within the electrode
- 2. Internal electrode Temperature

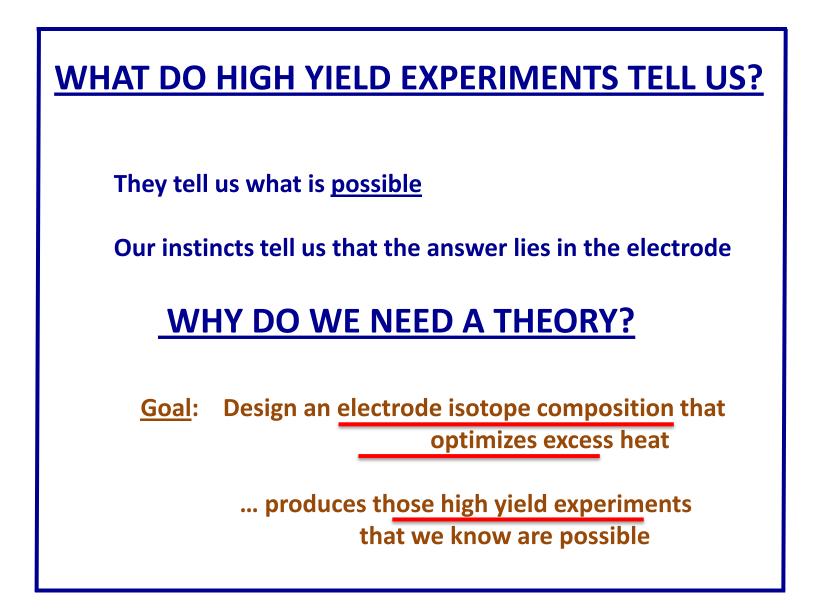

Part of the reversible process space, and hidden from our observation

SECONDARY VARIABLES

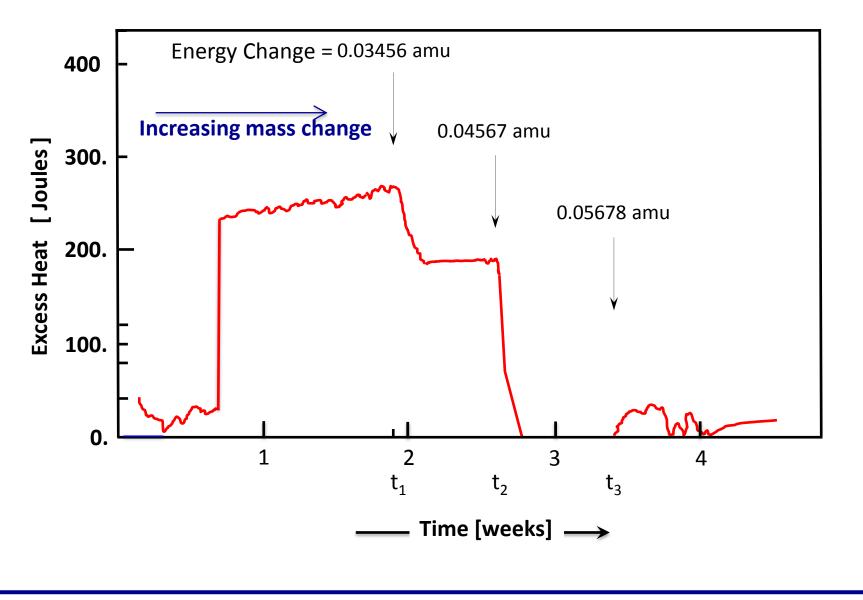
Nuclear Transmutations

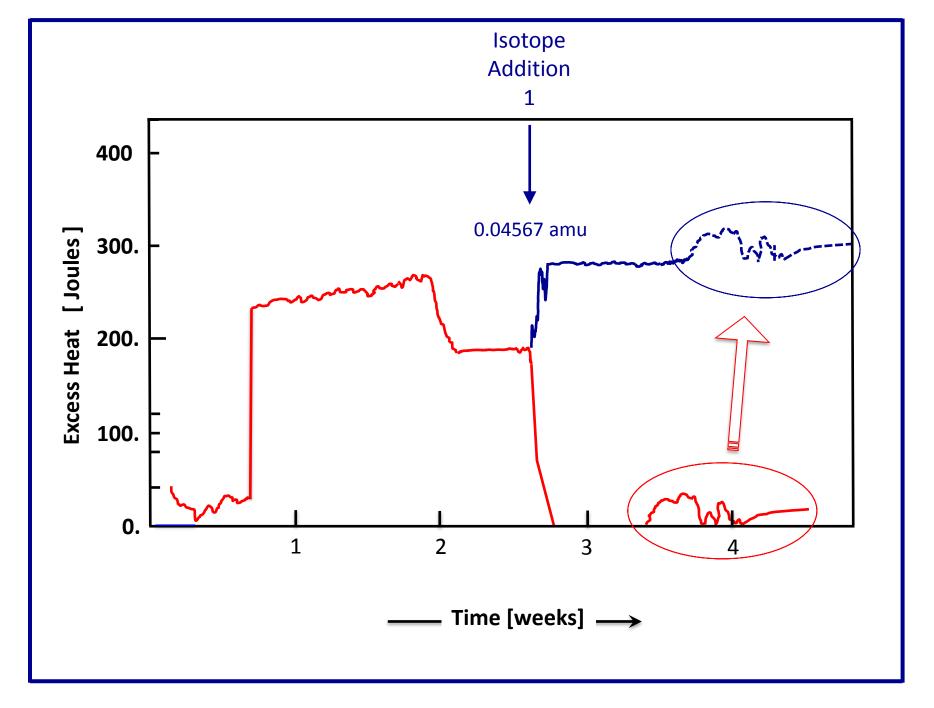
TERTIARY VARIABLES

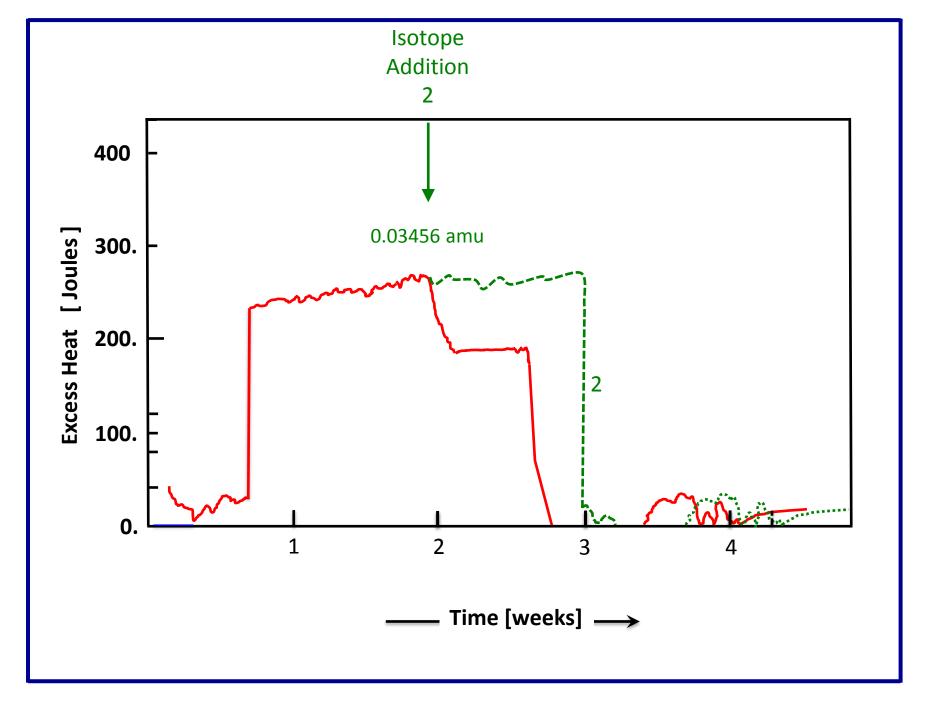

Excess heat

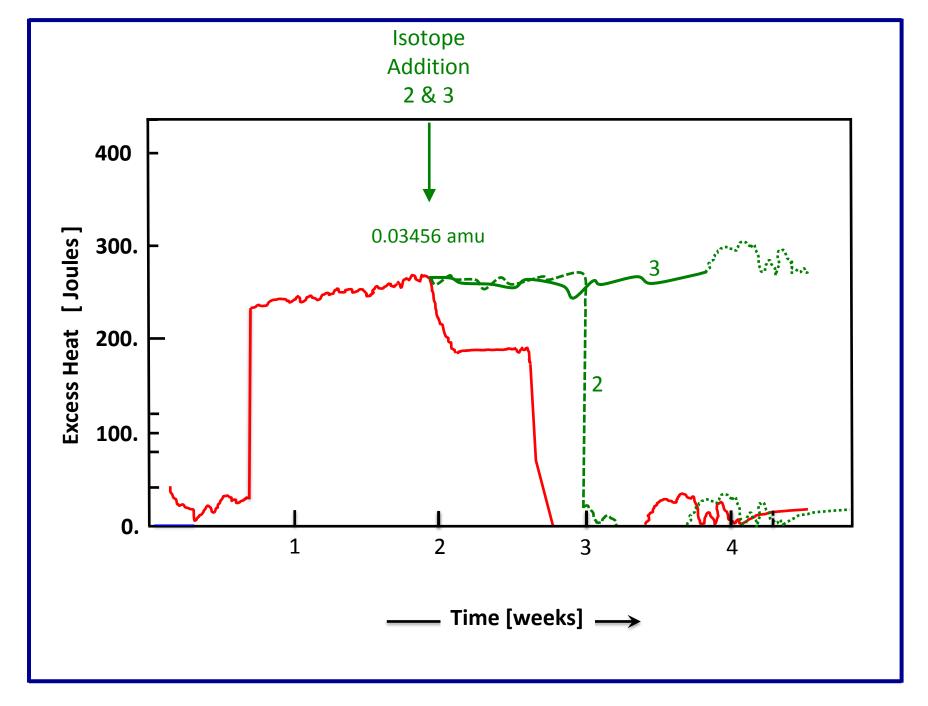

* This is the sole source of variability in cold fusion experiments... Knowing this, we can solve this problem

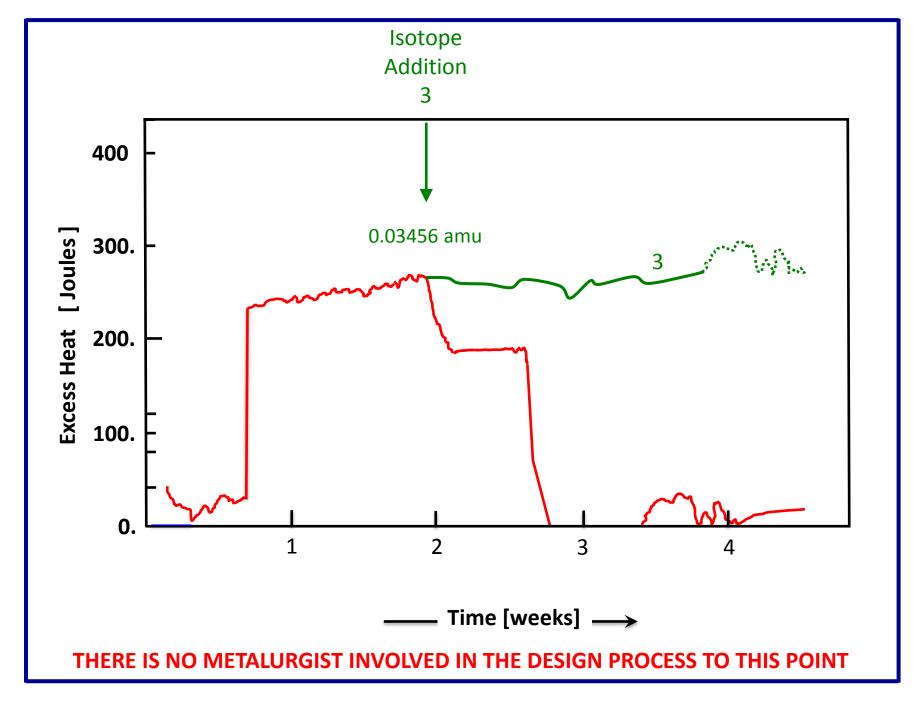
Time Series of Excess Heat Production


Or Utilization




HIGH PERFORMANCE ELECTRODE DESIGN




Hypothetical Excess Heat Time Series

LANP ELECTRODE DESIGN PROGRAM

LEAST ACTION NUCLEAR PROCESS COMPUTER PROGRAM

At each step: Calculates the

the smallest energy change its stable isotope product, and its excess heat contribution

In fact it:

Calculates precisely, ALL steps in the Least Action Nuclear Process

Proceedure

- 1. Select an initial electrode composition that favors exothermal reactions
- 2. Run it until endo-thermal reactions begin to dominate
 - 3. Note the magnitude of energy change occurring then
- 4. Add an isotope(s) that favors exothermal reactions at that energy change

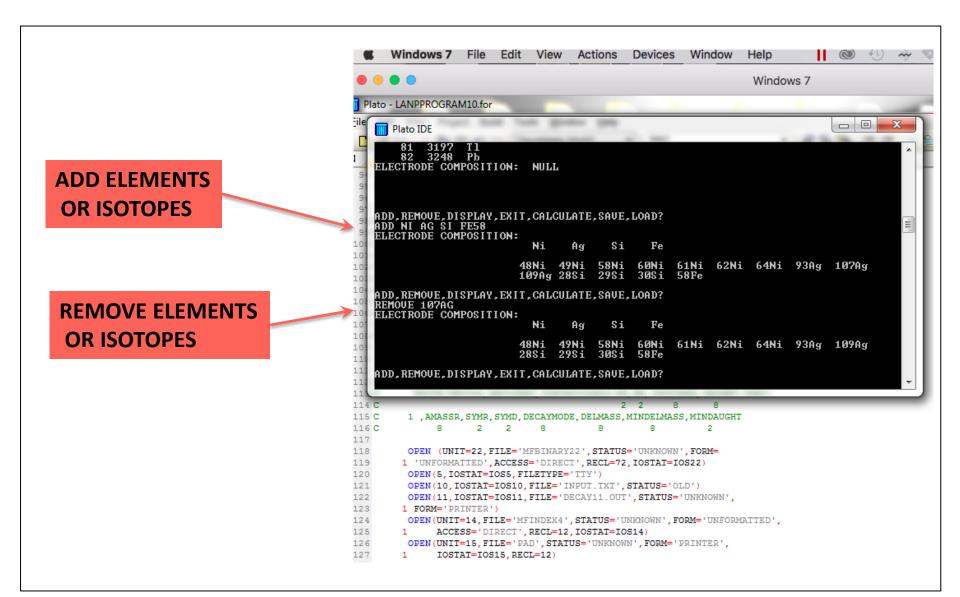
EXAMPLE WIKIPEDIA ISOTOPE TABLE - Ni

Isotopes of nickel

From Wikipedia, the free encyclopedia

nuclide symbol	Z(p)	N(n)	isotopic mass (u)	half-life	decay mode(s) ^{[6][n 1]}	daughter isotope(s) ^[n 2]				
	e	citatio	on energy (keV)							
⁵⁷ Ni	28	29	56.9397935(19)	35.60(6) h	β+	⁵⁷ Co				
⁵⁸ Ni	28	30	57.9353429(7)	Observationally stable ^[n 3]						
⁵⁹ Ni	28	31	58.9343467(7)	7.6(5)×10 ⁴ y	EC (99%)	⁵⁹ Co				
	20	31	56.9545467(7)	7.0(5)×10 y	β ⁺ (1.5x10 ⁻⁵ %) ^[7]	60				
⁶⁰ Ni	28	32	59.9307864(7)		Stable					
⁶¹ Ni	28	33	60.9310560(7)		Stable					
⁶² Ni ^[n 4]	28	34	61.9283451(6)		Stable					
60						60				

INITIAL DATA SET


3299 ISOTOPE RECORDS: HYDROGEN through LEAD

P #	N #	INITIAL ISOTOPE	FIRST DECAY PRODUCT	ISOTOPE MASS	SYN	1B	DECAY MODE	MASS CHANGE FROM DECAY STEP
1	0	1H		1.00782503	н			0.0000000E+00
1	1	2H		2.01410178	Н			0.0000000E+00
1	2	ЗH	3He	3.01604928	н	He	B-	-0.54857990E-03
1	3	4H	ЗH	4.02781110	н	н	1N	-0.10086650E+01
1	4	5H	ЗH	5.03531110	н	н	2N	-0.20173299E+01
1	5	6H	ЗH	6.04494280	н	н	3N	-0.30259948E+01
1	5	6H	2H	6.04494286		н	4N	-0.40346599E+01
1	6	7H	ЗH	7.05275108	н	н	4N	-0.40346599E+01
2 2	0	2He	1H	2.01589420	He	н	1P	-0.10072764E+01
2	1	3He		3.01602932	He			0.0000000E+00
2	2	4He		4.00260325	He			0.0000000E+00
2 2	3	5He	4He	5.01222500	He	He	1N	-0.10086650E+01
2 2	4	6He	6Li	6.01888918	He	Li	B-	-0.54857990E-03
2	5	7He	6He	7.02802118	He	He	1N	-0.10086650E+01
2 2	6	8He	8Li	8.03392270	He	Li	B-	-0.54857990E-03
2	6	8He	5He	8.03392315		He	B-,FF	-0.54857990E-03
2	7	9He	8He	9.04395300	He	He	1N	-0.10086650E+01
2 2	8	10He	8He	10.05240800	He	He	2N	-0.20173299E+01
3 3 3	1	4Li	3He	4.02719230	Li	He	1P	-0.10072764E+01
3	2	5Li	4He	5.01254500	Li	He	1P	-0.10072764E+01
3	3	6Li		6.01512279	Li			0.0000000E+00
3	4	7Li		7.01600456	Li			0.0000000E+00
3	5	8Li	8Be	8.02248736		Ве	B-	-0.54857990E-03
3 3	6	9Li	8Be	9.02678952	Li	Be	B-,1N	-0.10092135E+01
	6	9Li	9Be	9.02678967		Ве	B-	-0.54857990E-03
3	7	10Li	9Li	10.03548116	Li	Li	1N	-0.10086650E+01

EXAMPLE LANP PROGRAM OUTPUT

670s	167Re	166.9	971557	62 1	.62.928	37312	2	0.46	59347	03
	187.95811441	187.95583821		0.00172762			, в-	/		
	188.95922990 189.96182160	188.95814751 189.95844701					,В- .В-			
	190.96312511	190.96059401					,B-,B-			
		191.96148072		0.00393280			, B , B			
1620s 158W	161.98443540	141.907723323						, B+ AA, B+,	B+.B+.B+.A	A, AA
1630s 159W	162.98269430	142.909814326	162.59358492	162.98269430	6182.66646490					С, АА, В-, АА
1630s 162W	162.98269653	161.92877840	-0.48204786	0.57187027	0.57187027	162Er	, B+, 19, B+	,B+,B+,B+,	B+,B+	
	162.98269653					-		,B+,B+,B+,		С
1640s 160W	163.97804220	143.91199930						,B+,B+,AA,		
		143.91199930			/			, AA, B+, AA,		
1650s 161W	164.97676220	148.91718472		29.95925370				,AA,B+,B+,		с
		164.93032212 161.92877840		0.70407595				,B+,B+,B+,		
		165.93029312		0.74497264				,B+,B+,B+,		
		162.92873122		0.51209381				,B+,B+,B+,		
	166.97155762	162.92873122		4.51217348				,B+,B+,B+,		N
1680s 168Re	167.96780413	167.93389750	0.23352828	0.26743491		-		,B+,B+,B+		\backslash
16803 164W	167.96780396	163.92920030	-3.55805545	0.48054821	0.48054821	164Er	, AA, B+, B+	, B+, B+, EC,	в+	
1690s 169Re	168.96701927	168.93421332	0.21832002	0.25112897		169Tm	,B+,B+,B+	,B+,B+,B+,	EC	$\langle \rangle$
1690s 165W		164.93032212		0.34618094				,B+,B+,B+,	B+,EC	$\langle \rangle$
		169.93476182	0.18752178	0.21633708				,B+,EC,B+		
1700s 176W	169.96357727 170.96318520	175.94140862	-3.99092174	-9.96875309 0.14631948			, AA, EC, B+			
1710s 171Re 1710s 167W	170.96318520	166.93204822	-3,85000569	0.14631948				,B+,B+,B+	PC .	
	171.96002316	171.93638150	0.13398710	0.15762876				, B+, B+, B+, B+,	20	
1720s 168W	171.96002197	167.93389750		0.12809314	0.12809314		, AA, B+, B+			
1730s 173Re										
1730s 169W	0 513	209381	-163Dv	r 🔼	A, B+, E	24 R4	- R+	R+ F	₹¥ R+	- EC
1740s 174Re			1				· · · ·			,
	4.513	217343	163Dy	, , E	3+, AA, E	3+,B+	, в+	, B+, E	3+,B+	, EC

LANP PROGRAM: ELECTRODE COMPOSITION

LANP PROGRAM: ELECTRODE COMPOSITION

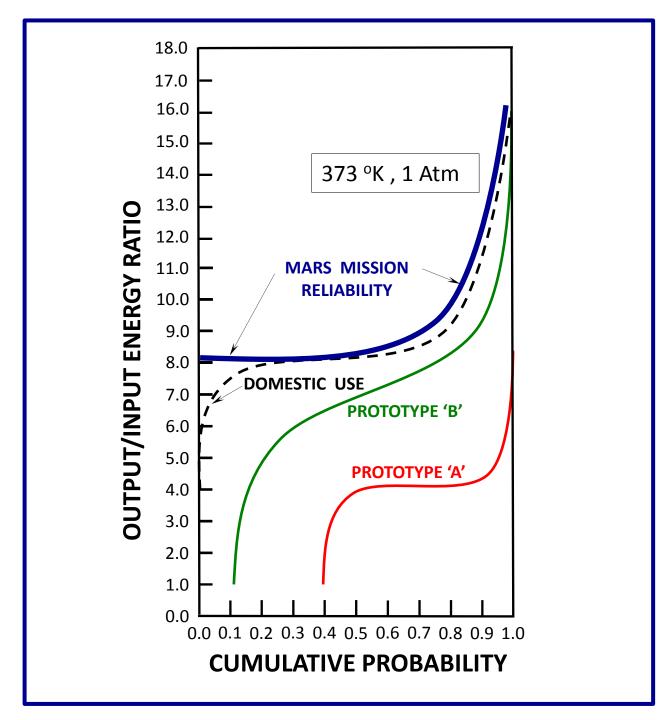
INITIAL REACTION	🗰 Windows 7 File Edit View Actions Devices Window Help
PRODUCT	Windows 7
	Plato - INPUT5
	ile Plato IDE
LEAST ACTION TRANSMUTATION	1 62Ni +30Si + (1)2d =>94Tc =>94Mo ; = 0.00402060 amu 1362 62Ni +30Si + (2)2d =>96Ru =>96Ru ; = 0.00000000 amu 1362 62Ni +30Si + (3)2d =>98Rh =>98Ru ; = 0.00487185 amu 1362 62Ni +30Si + (4)2d =>100Pd =>100Ru ; = 0.00818928 amu
	1365
PRODUCT	1367 1367 1368 1368 62Ni +107Ag + $(1)2d = >1710s = >171Yb$; = 0.14631948 amu 1368 62Ni +107Ag + $(2)2d = >173Ir = >173Yb$; = 0.22308767 amu 1369 62Ni +107Ag + $(3)2d = >175Pt = >171Yb$; = 0.30091725 amu 1370 62Ni +107Ag + $(4)2d = >177Au = >177Hf$; = 0.25863301 amu
	$\begin{array}{rcl} 1372\\ 1372\\ 62Ni & +109Ag & + (1)2d \\ 373\\ 62Ni & +109Ag & + (2)2d \\ 1373\\ 62Ni & +109Ag & + (2)2d \\ 374\\ 62Ni & +109Ag & + (3)2d \\ 374\\ 62Ni & +109Ag & + (3)2d \\ 377\\ 62Ni & +109Ag & + (4)2d \\ 3779Au \\ 3779Hf \\ 376\\ 376\\ 376\\ 376\\ 376\\ 376\\ 376\\ 37$
	1377 1375 62Ni +58Fe + (1>2d =>122Cs =>122Te ; = 0.02529036 amu 62Ni +58Fe + (2>2d =>124Ba =>124Xe ; = 0.01446947 amu 1375 62Ni +58Fe + (3>2d =>126La =>126Xe ; = 0.03037227 amu 1380 62Ni +58Fe + (4>2d =>128Ce =>128Xe ; = 0.04950450 amu
LEAST ACTION	1382 44 68 112Ru 112Rh 111.91897800 Ru Rh B- 🍸 -0.54857990E-03 0.0000000E+00 🕅
	1383 44 69 113Ru 113Rh 112.92249800 Ru Rh B0.54857990E-03 0.00000000E+00 X 1384 44 70 114Ru 114Rh 113.92428250 Ru Rh B0.54857990E-03 0.00000000E+00 X
MASS CHANGE	1385 44 70 114Ru 113Rh 113.92428589 Rh B-,1N -0.10092135E+01 0.0000000E+00 X 1386 44 71 115Ru 115Rh 114.92869140 Ru Rh B0.54857990E-03 0.0000000E+00 X
INCREASING MAGNITUDE	1387 44 71 115Ru 114Rh 114.92868805 Rh B-,1N -0.10092135E+01 0.00000000E+00 X
IS ORDER OF ISOTOPE	1388 44 72 116Ru 116Rh 115.93081750 Ru Rh B0.54857990E-03 0.00000000E+00 X 1389 44 73 117Ru 117Rh 116.93558750 Ru Rh B0.54857990E-03 0.00000000E+00 X
	1390 44 74 118Ru 118Rh 117.93782860 Ru Rh B0.54857990E-03 0.00000000E+00 X
APPEARANCE IN ELECTRO	1391 45 44 89Rh 89Ru 88.94884480 Rh Ru B+ -0.54857990E-03 0.00000000E+00 X 1392 45 45 90Rh 90Ru 89.94287540 Rh Ru B+ -0.54857990E-03 0.00000000E+00 X
	1392 45 46 91Rh 91Ru 90.93655430 Rh Ru B+ -0.54857990E-03 0.0000000E+00 X
	1394 45 47 92Rh 92Ru 91.93198430 Rh Ru B+ -0.54857990E-03 0.0000000E+00 X 1395 45 48 93Rh 93Ru 92.92574430 Rh Ru B+ -0.54857990E-03 0.0000000E+00 X
	1335 45 48 33KN 93KU 92.92574430 KN KU B+ -0.54857990E-03 0.0000000E+00 X

COMPREHENSIVE TRACKING EXPERIMENT

IS NEEDED

Two sets of experiments: Ni and Pd electrodes.

Five identical experiments with a common power source


Sampling: initial, excess heat initiation, three other intervals, following heat cessation.

Measurements

Before and after SIMS analysis on each electrode AA measurements to confirm SIMS Cumulative gas phase analysis at each sampling Radiation measurements :RF, microwave, far/near IR, UV, X-ray, and Gamma Excess heat calorimetry

...What else do we need?

WE NEED TO SEE THE BIG PICTURE...THE RELATIONSHIPS BETWEEN VARIABLES

Thank youIt is an honor to speak here

Daniel Szumski, Independent scholar www.LeastActionNuclearProcess.com

SO FAR ELECTRODE METHODS
ELEMENT DOPING: [Ag ¹⁰⁷ , Ag ¹⁰⁹] at natural abundance ratio
ISOTOPE DOPING WITH SPECIFIC ISOTOPES: [Ag ¹⁰⁷ only]
BASE METAL ISOTOPE ADJUSTMENT: i.e. Ni ⁶⁰ only [May be required for Mars Mission Reliability]

OPERATIONAL METHODS

CONTINUOUS FLOW OF ELECTRODE PARTICLES

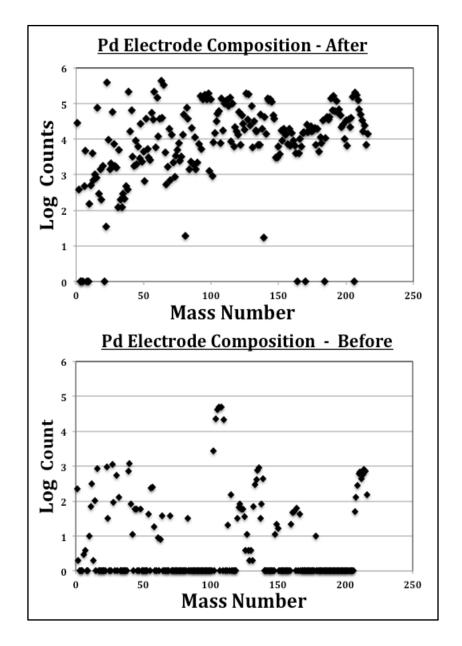
DYNAMIC ELECTRODE SUBSTITUTIONS

ELECTRODE ADDITIONS AND DELETIONS

MULTIPLE ELECTRODES TO 'SMOOTH OUT AMPLITUDE EFFECTS

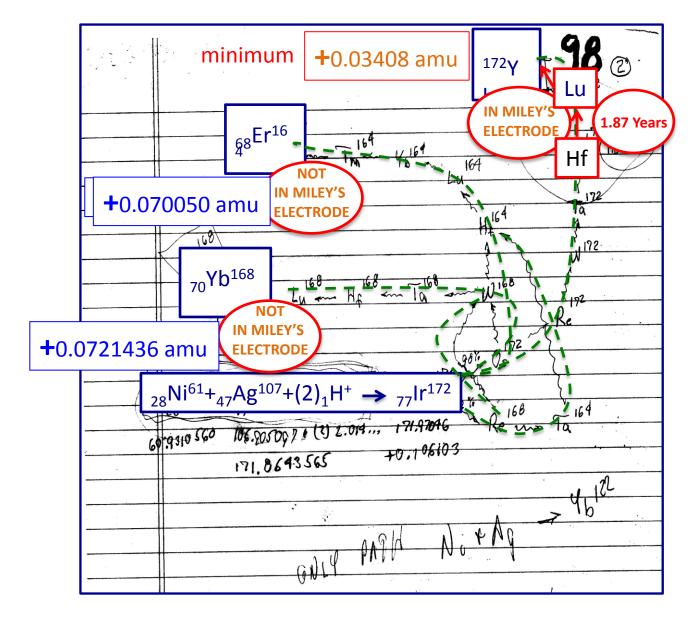
ELECTRODE RE-PLATING FOR RECYCLING IN RESOURCE LIMITED APPLICATIONS [SPACECRAFT]

ELECTRODE APPLICATIONS

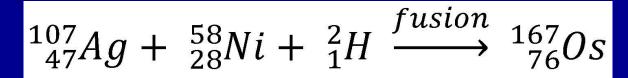

LANP can be used to optimize these applications

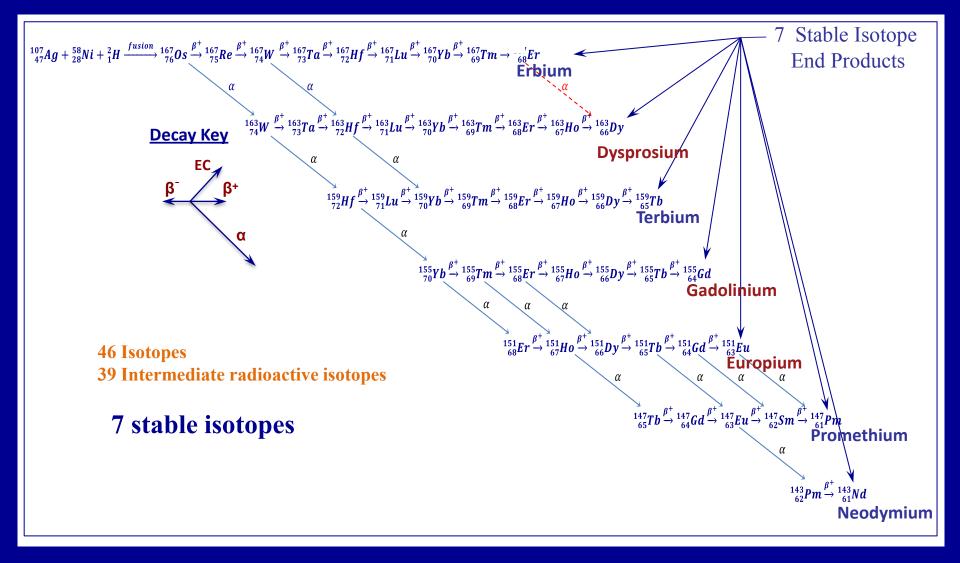
EXCESS HEAT PRODUCTION

PRODUCTION OF SPECIFIC ISOTOPES OR ELEMENTS

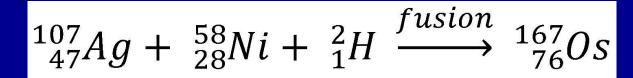

RADIOACTIVE WASTE STABILIZATION

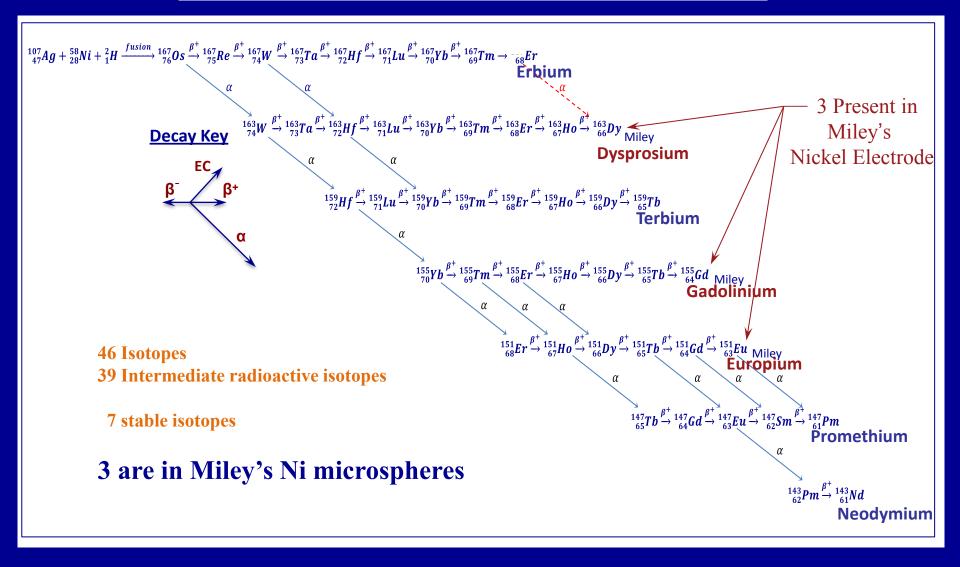
THIS IS AN ELECTRODE THAT PRODUCED NO EXCESS HEAT

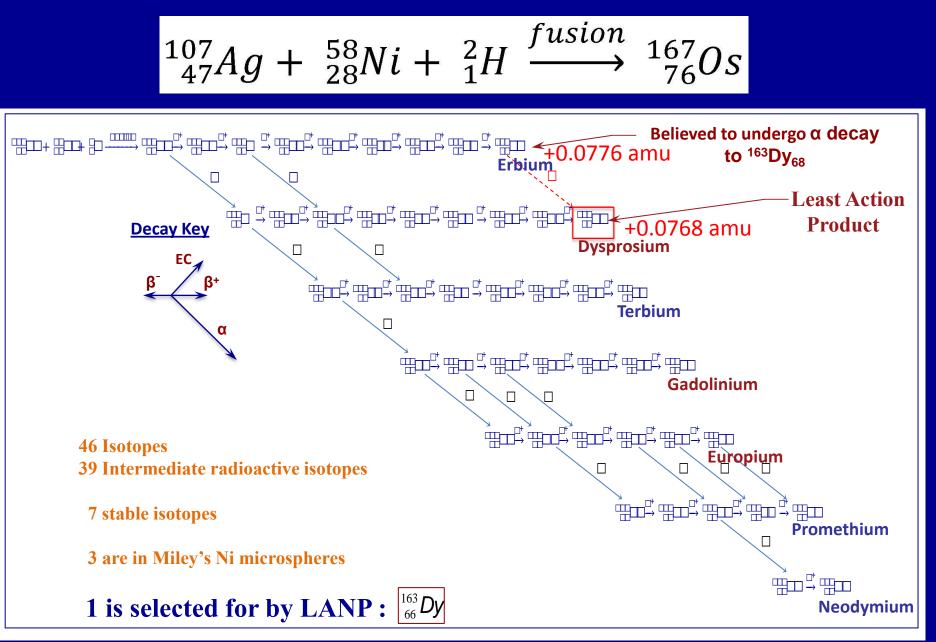



Ref: Tadahiko Mizuno, Personal communication Data set 'Before .XLS

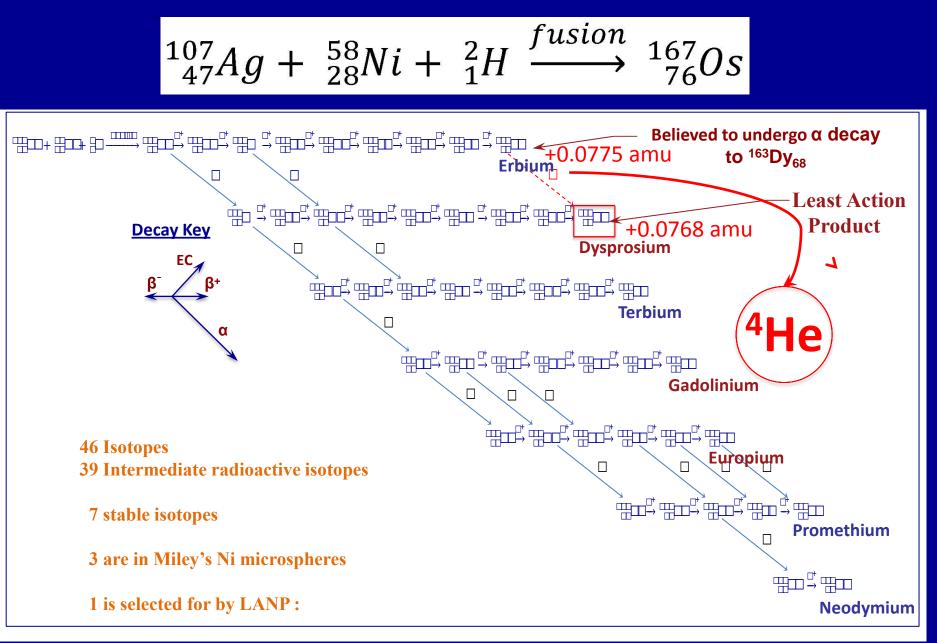
 $^{61}_{28}Ni + ^{107}_{47}Ag + (2)^2_1H \xrightarrow{fusion} ^{172}_{70}Yb$

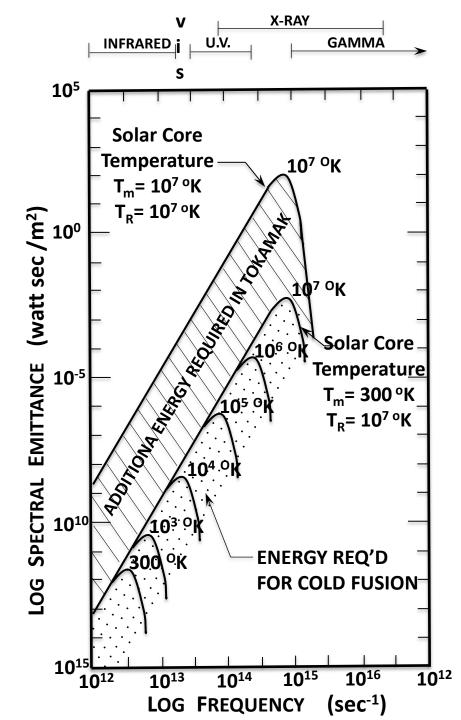



ANALYSIS OF GEORGE MILEY TRANSMUTATION DATA

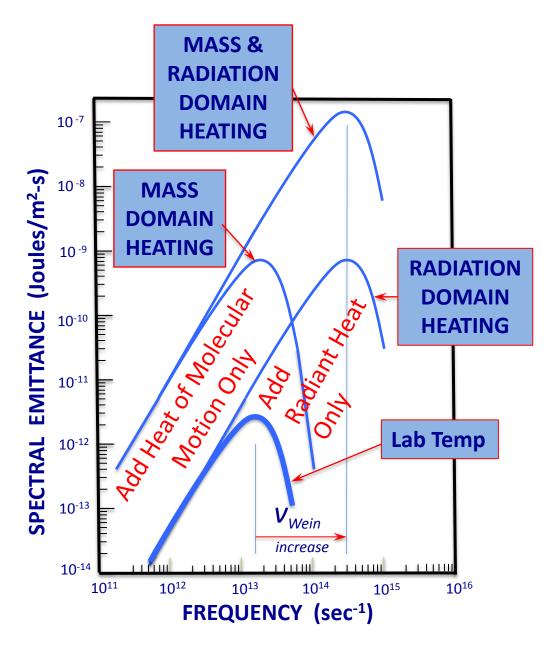


ANALYSIS OF GEORGE MILEY TRANSMUTATION DATA

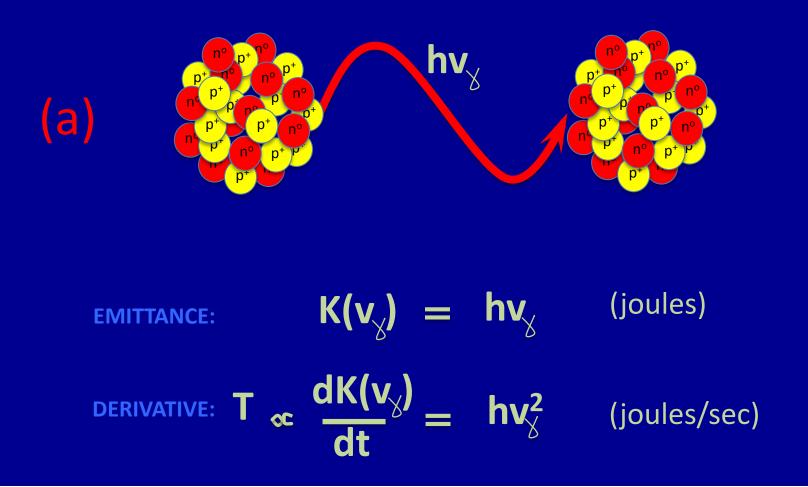


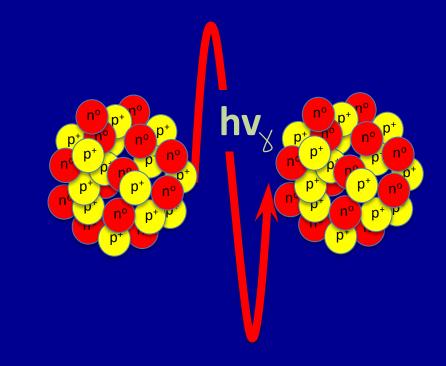


EXAMPLE ANALYSIS OF GEORGE MILEY DATA

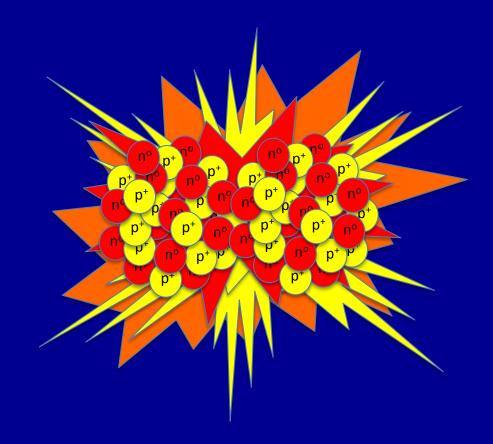


ANALYSIS OF GEORGE MILEY TRANSMUTATION DATA




MASS & RADIATION DOMAIN TEMPERATURES

SOLAR TEMPERATURES ARE POSSIBLE


CONSIDER TWO NUCLEI IN MOSSBAUER RESONANCE:

The Reversible Thermodynamic Process

Perfect Reversible Process

1. No particle movement

Imperfect Reversible Process

- 1. Involves mass (Deuteron) motion This introduces: Heisenberg uncertainty, Statistical behavior, and Irreversibility
- 2. It accomplishes work
 - 3. Process allows a minute [mī'noot] amount of kinetic energy at each NEXT STEP
 - 4. During that STEP a minute amount of energy must be restored so that

there

is no entropy increase or energy change

5. No detectable change in nature as a results of its operation

it has no external

manifestation

Its is hidden from observation.

- 2. It accomplishes work
- 3. No kinetic energy
- 4. No renewal required
- 5. No change in nature as a result of its operation No external manifestation It is hidden from observation

The Reversible Thermodynamic Process

Perfect Reversible Process

1. No particle movement

2. It accomplishes work

3. No kinetic energy

4. No renewal required

5. No change in nature as a result of its operation it has no external manifestation It is hidden from observation

Imperfect Reversible Process

- 1. Involves mass (Deuteron) motion This introduces: Heisenberg uncertainty, Statistical behavior, and Irreversibility
- 2. It accomplishes work
- 3. Process allows a minute [mīˈnoot] amount of kinetic energy at each NEXT STEP
- 4. A minute amount of energy must be restored at each step so that there is no entropy increase or energy change
- 5. No detectable change in nature as a results of its operation It has no external manifestation

Three levels of Cause/Effect Variability in the Cold Fusion Process

Primary Independent variables Energy storage in chemical or Mossbauer bonds Temperature (Thermonuclear is required)

Secondary Variables

Nuclear Transmutations

Tertiary Variables

Excess heat

RAW DATA IMPORTED FROM WIKIPEDIA

WORD TEXT FILE – FORMAT NIGHTMARE, LOTS OF ERRORS/INCONSISTENCIES

MY RECORD NUMBER	PROTON	NEUTRON	SYMBOL	DAUGHTER	ISOTOPE MASS -amu
2	1	0	1H		1.007825032
3	1	1	2H		2.01410177784
4	1	2	ЗH	3He	3.016049277725
5	1	3	4H	ЗH	4.0278111
6	1	4	5H	ЗH	5.0353111
7	1	5	6H	ЗH	6.0449428
8				2H	
9	1	6	7H	ЗH	7.05275108
10	2	0	2He	1H	2.0158942
11	2	1	3He		3.016029319126
12	2	2	4He		4.002603254156
13	2	3	5He	4He	5.012225
14	2	4	6He	6Li	6.01888918
15				4He	
16				2H	
17	2	5	7He	6He	7.02802118
18	2	6	8He	8Li	8.0339227
19				7Li	
20				5He	
21	_	_		3H	
22	2	7	9He	8He	9.043953
23	2	8	10He	8He	10.052408
24	3	1	4Li	3He	4.0271923
25	3	2	5Li	4He	5.012545
26	3	3	6Li		6.01512279516
27	3	4	7Li	0.7	7.016004558
28	3	5	8Li	8Be	8.0224873610
29	3	6	9Li	8Be	9.026789521
30				9Be	

LANP COMPUTER PROGRAM: FORTRAN70/95

2 C	
3 C	
4 C	ннинининининининини
5	PROGRAM LANPPROGRAM ! HHHHHHH SEE FILE 'STATUS' HHHHHH
6 C	ннинининининининини
7 C	
8 C	READ ISOTOPE DATA AND CREATE MASTER FILE OF ISOTOPE DECAY
9 C	THEN CALCULATE THE LEAST ACTION NUCLEAR PROCESS' FINAL ISOTOPES
10 C	WRITTEN BY DAN SZUMSKI, INDEPENDENT SCHOLAR
1 C	
12 C	
L3 C	
14 C	INCLUDE 'LANPCOMMON.FOR'
15 C	
16 <mark>C</mark>	LANPPROGRAM COMMON BLOCK
17 C	
18	REAL*8 AMASS (3600), AMASSR, AMASSD, DELMASS, ADUMMY, NEWMASS
19	REAL*8 ADM, MINDELMASS, DELTAMASS (3600), DMASS (210), BDUMMY
2 0	REAL*8 DELMASS1(3600), SUMMASS(3600), SUMDELMASS, DELTMASS
21	REAL*8 SUMMASSR, SUMDELMASS1, DUMMY, ZERO, DELTAMASSR
22 C	
23	INTEGER IN, OUT, J, K, L, MESS
2.4	INTEGER ISTEP, INODE, IREC, JREC
25	INTEGER PR, NR, NBRANCH, P1, N1, PY, NY
2.6	INTEGER PINDEX (3600), NINDEX (3600), ISTABLE (3600)

1									
2	Р	N ROOT	DAUGHT	MASSR	MASSD	TOTEMISSION	MASS CHANGE	MINDELMASS MIND	AU DECAY SEQUENCE
3	1	0 1H		1.00782503	1.00782503	0.00000000	0.0000000	0.0000000 1H	
4	1	1 2H		2.01410178	2.01410178	0.00000000	0.0000000	0.0000000 2H	
5	1	2 3H	3He	3.01604928	3.01602932	-0.00054858	-0.00052862	-0.00052862 3He	, B-
6	1	3 4H	ЗH	4.02781110	3.01602932	-1.00919362	0.00258816	0.00258816 3He	,1N,B-
7	1	4 5H	ЗH	5.03531110	3.01602932	-2.01785852	0.00142326	0.00142326 3He	,2N,B-
8	1	5 6H	ЗH	6.04494280	3.01602932	-3.02652342	0.00239006	0.00239006 3He	, 3N, B-
9	1	5 6H	2H	6.04494286	2.01410178	-4.03465990	-0.00381882	-0.00381882 2H	, 4N
10	1	6 7H	ЗH	7.05275108	1.00782503	-4.03465990	2.01026615	2.01026615 1H	, 4N
11	2	1 3He		3.01602932	3.01602932	0.00000000	0.0000000	0.0000000 3He	
12	2	2 4He		4.00260325	4.00260325	0.00000000	0.0000000	0.0000000 4He	
13	2	3 5He	4He	5.01222500	4.00260325	-1.00866500	0.00095675	0.00095675 4He	, 1N
14	2	4 6He	6Li	6.01888918	6.01512279	-0.00054858	0.00321781	0.00321781 6Li	, B-
15	2	4 6He	4He	6.01888895	4.00260325	-0.00054858	2.01573712	2.01573712 4He	,B+
16	2	5 7He	6He	7.02802118	6.01512279	-1.00544719	0.00745120	0.00745120 6Li	,1N,B-
17	2	6 8He	8Li	8.03392270	4.00260325	-0.00109716	4.03022229	4.03022229 4He	,B-,B-,FF
18	2	6 8He	7Li	8.03392315	7.01600456	-1.00921350	0.00870509	0.00870509 7Li	,B-,1N
19	2	6 8He	5He	8.03392315	4.00260325	0.00040817	4.03172807	4.03172807 4He	,B-,1N
20	2	7 9He	8He	9.04395300	4.00260325	3.02100871	8.06235846	8.06235846 4He	,1N,B-,B-,FF
21	2	8 10He	8He	10.05240800	4.00260325	2.01234381	8.06214856	8.06214856 4He	,2N,B-,B-,FF
22	3	1 4Li	3He	4.02719230	3.01602932	-1.00727640	0.00388658	0.00388658 3He	,1P
23	3	3 6Li		6.01512279	6.01512279	0.00000000	0.0000000	0.00000000 6Li	
24	3	4 7Li		7.01600456	7.01600456	0.00000000	0.0000000	0.00000000 7Li	
25	3	5 8Li	8Be	8.02248736	4.00260325	-0.00054858	4.01933553	4.01933553 4He	,B-,FF
26	3	6 9Li	8Be	9.02678952	4.00260325	-1.00921350	4.01497277	4.01497277 4He	,B-,1N,FF
27	3	6 9Li	9Be	9.02678967	9.01218224		0.01405885	0.01405885 9Be	,B-
28	3	7 10Li	9Li	10.03548116	4.00260325	3.00630777	9.03918568	9.03918568 4He	,1N,B-,1N,FF
29	3	8 11Li	10Be	11.04379821	10.01293704		0.02109909	0.02109909 10B	,B-,1N,B-
30	3	8 11Li	11Be	11.04379845	11.00930544	-0.00109716	0.03339585	0.03339585 11B	,B-,B-
31		8 11Li	9Be	11.04379845	9.01218224	-2.01787850	0.01373771	0.01373771 9Be	,B-,2N
32	3	8 11Li	8Be	11.04379845	4.00260325	-3.02654340	4.01465180	4.01465180 4He	, B-, 3N, FF
33	3	9 12Li	11Li	12.05378107	10.01293704	-0.98811449	1.05272954	1.05272954 10B	,1N,B-,1N,B-
34	4	1 5Be	4Li	5.04079429	3.01602932	-1.00338982	1.02137515	1.02137515 3He	,1P,1P

76	91 1670)s 163W	166.9	7155800	162.	92873122 -
76	91 1670)s 167Re	166.9	7155762	162.	92873122
62	.9287312	2 -3.530	73297	0.5120	9381	0.512093
62	.9287312	2 0.469	34703	4.5121	7343	4.512173

2739 75	111 186Re	186W	185.95498657	185.95436411	0.00054858	0.00117104	0.00117104	186W	, EC
2740 75	111 186Re	1860s	185.95498611	181.94820429	-4.00205488	0.00472694	0.00472694	182W	, B-, AA
2741 75	112 187Re	1870s	186.95575311	186.95575051	-0.00054858	-0.00054598	-0.00054598	1870s	,B-
2742 75	112 187Re	183Ta	186.95574951	182.95022309	-4.00090536	0.00462106	0.00462106	183W	, AA, B-
2743 75	113 188Re	1880s	187.95811441	187.95583821	-0.00054858	0.00172762	0.00172762	1880s	,B-
2744 75	114 189Re	1890s	188.95922990	188.95814751	-0.00054858	0.00053381	0.00053381	1890s	,B-
2745 75	115 190Re	1900s	189.96182160	189.95844701	-0.00054858	0.00282601	0.00282601	1900s	,B-
2746 75	116 191Re	1910s	190.96312511	190.96059401	-0.00109716	0.00143394	0.00143394	191Ir	, B-, B-
2747 75	117 192Re	1920s	191.96596210	191.96148072	-0.00054858	0.00393280	0.00393280	1920s	, B-
2748 76	86 1620s	158W	161.98443540	141.907723323	097.39636818	161.98443540	3117.47308026		, AA, AA, B+, B+, AA, B+, B+, B+, B+, AA, AA
2749 76	87 1630s	159W	162.98269430	142.909814326	162.59358492	162.98269430	6182.66646490		, AA, AA, B+, AA, B+, B+, B+, B+, B+, EC, AA, B-, AA
2750 76	87 1630s	162W	162.98269653	161.92877840	-0.48204786	0.57187027	0.57187027	162Er	,B+,1P,B+,B+,B+,B+,B+,B+
2751 76	87 1630s	163Re	162.98269653	162.92873122	0.98379948	1.03776479	1.03776479	163Dy	,B+,B+,B+,B+,B+,B+,B+,B+,E+,EC
2752 76	88 1640s	160W	163.97804220	143.91199930	570.70358015	163.97804220	590.76962305		, AA, AA, AA, B+, B+, AA, B+, B+, AA
2753 76	88 1640s	164Re	163.97804260	143.91199930	586.71778729	163.97804260	606.78383059		, B+, AA, AA, AA, B+, AA, B+, B+, AA
2754 76	89 1650s	161W	164.97676220	148.91718472	13.89967622	29.95925370	29.95925370	149Sm	, AA, AA, AA, AA, B+, B+, B+, B+, B+, EC
2755 76	89 1650s	165Re	164.97676086	164.93032212	0.65763721	0.70407595	0.70407595	165Ho	,B+,B+,B+,B+,B+,B+,B+,EC
2756 76	90 1660s	162W	165.97269120	161.92877840	-3.47572916	0.56818364	0.56818364	162Er	,AA,B+,B+,B+,B+,B+,B+
	90 1660s		165.97268677	165.93029312	0.70257899	0.74497264	0.74497264	166Er	,B+,B+,B+,B+,B+,EC,B+
		163W	166.97155800	162.92873122		0.51209381	0.51209381		,AA,B+,B+,B+,B+,B+,B+,B+,EC
			166.97155762	162.92873122	0.46934703	4.51217343	4.51217343	_	, B+, AA, B+, B+, B+, B+, B+, B+, EC
	92 1680s		167.96780413	167.93389750	0.23352828	0.26743491	0.26743491		,B+,B+,B+,B+,B+,B+
	92 1680s	164W	167.96780396	163.92920030	-3.55805545	0.48054821	0.48054821		,AA,B+,B+,B+,B+,EC,B+
	93 1690s		168.96701927	168.93421332	0.21832002	0.25112597	0.25112597		,B+,B+,B+,B+,B+,EC
	93 1690s	165W	168.96702576	164.93032212	-3.69052270	0.34618094	0.34618094		,AA,B+,B+,B+,B+,B+,B+,EC
	94 1700s		169.96357712	169.93476182	0.18752178	0.21633708	0.21633708		,B+,B+,B+,B+,EC,B+
	94 1700s	176W	169.96357727	175.94140862	-3.99092174	-9.96875309	-9.96875309		, AA, EC, B+
	95 1710s		170.96318520	170.93632582	0.11946010	0.14631948	0.14631948		,B+,B+,B+,B+,B+,B+
	95 1710s	167W	170.96318054	166.93204822	-3.85000569	0.18112663	0.18112663		, AA, B+, B+, B+, B+, B+, EC
	96 1720s		171.96002316	171.93638150	0.13398710	0.15762876	0.15762876		, B+, B+, B+, B+, EC, B+
	96 1720s	168W	171.96002197	167.93389750	-3.89803133	0.12809314	0.12809314		, AA, B+, B+, B+, B+
	97 1730s		172.95980816	172.93821082	0.08609950	0.10769684	0.10769684		, B+, B+, B+, B+, EC
2771 76	97 1730s	169W	172.95980835	168.93421332	-3.90408755	0.12150748	0.12150748	169Tm	, AA, B+, B+, B+, B+, EC