12th International Workshop on Anomalies in Hydrogen Loaded Metals

Progress on Transmutation Experiments induced by D₂ gas permeation

T.Itoh^{1,2}, J. Kasagi¹, Y.Iwamura¹, S.Tsuruga³

1

 ¹Condensed Matter Nuclear Reaction Division, Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan
²CLEAN PLANET Inc., Tokyo 105-0022, Japan
³ Research & Innovation Center, Mitsubishi Heavy Industries, Ltd., Yokohama 236-8515, Japan

$Cs \rightarrow Pr$ Transmutation MHI Experiments

J. J. App. Phys. 41(2002)4642

Replicated experiment of Toyota lab

Hioki et al. JJAP 52 (2013) 107301

Object

Successive various measurements showed existencs of ¹⁴¹Pr XPS, ICP-MS, Tof-SIMS, In-situ XRF at SPring8

There is a criticism that the mass of the nucleus was not identified, since the employed mass spectrometry, such as ICP-MS, cannot exclude possibilities of chemical compound objects. Direct assignment of the nucleus (141Pr) by using nuclear physics approach is highly demanded.

Therefore, we employed the Rutherford Backscattering Spectroscopy (RBS) to identify ¹⁴¹Pr for direct nuclear mass assignment.

Rutherford Backward Scattering (RBS)

Scattered by Nucleus; Mass determined by kinematics Advantage for large A and Z

Expected RBS Spectrum by irradiation 128-MeV ⁴⁰Ar

Cs transmutation sample by D₂ gas Permeation

Sample for RBS was provided by MHI

Cyclotron Radioisotpe Center, Tohoku University

ECR ion source + 930 AVF Cyclotron

Large Scattering chamber

Geometric Arrangement of Beam, Target and detector

Beam: ${}^{40}\text{Ar}^{7+}$ 128MeV ~ 1 particle nA Si detector: $300\mu\text{m}$ in thickness $300 \text{ mm}^2 x3$, 450 mm²x2 $\Theta = 165^\circ$

total $\Delta\Omega$ = 0.083 sr

Several-hour measurement for a sample to identify Pr of 10 ng/cm²

Sensitivity of Pr identification

By measuring several hours, 10 ng/cm²-Pr can be detected with the confidence level of 99% (or statitical significance of 2.6 σ).

* test peace was provided by Toyota Central Research and Development Laboratories

Sample Target

test peace Pr Implantation 10¹⁴ Pr:23.4ng/cm²

Au(10nm)/Si -

FG sample (SK137) Cs:134ng/cm² Pr:74ng/cm²

> Ref Sample (Only Multilayer)

test peace Cs Implantation

FG sample (SK132) Cs: 94.6 ng/cm² Pr: 51 ng/cm²

Ref Sample (Cs Dope, No D_2 Permeation)

FG sample (SK130) Cs: 57.7 ng/cm² Pr: 50.8 ng/cm²

RBS spectrum : with D₂ gas permeation Summed spectrum of foreground samples

BG: mainly Pt impurity in thick Pd ~ 100 ppm→BG determine a detection limit. ¹³³Cs : distributed 0 - 80 nm in depth ^{nat}W: distributed 0 - 80 nm in depth contamination of W (182,183,184,186) of multilayer (1) A tiny peak at A=141 (¹⁴¹Pr) ¹⁴¹Pr exists on the surface. not observed for without D consistent with MHI report

12

RBS spectrum : with D₂ gas permeation Summed spectrum of foreground samples

BG: mainly Pt impurity in thick Pd ~ 100 ppm→BG determine a detection limit. ¹³³Cs : distributed 0 - 80 nm in depth ^{nat}W: distributed 0 - 80 nm in depth contamination of W (182,183,184,186) of multilayer (1) A tiny peak at A=141 (¹⁴¹Pr) ¹⁴¹Pr exists on the surface. not observed for without D consistent with MHI report

Dt region, peok structure

RBS spectrum with D₂ gas permeation: Cs, Pr detection

Pr amount comparison of ICP-MS and RBS

Sample Name	Analytical method	Cs(ng/cm ²⁾	Pr(ng/cm ²)
SK130	ICP-MS	57.7	50.8
	RBS	94.1±10.9	< 6
SK132	ICP-MS	94.6	51
	RBS	37.8±5.9	< 5.1±2.6
SK137	ICP-MS	134	74
	RBS	19.7±7.8	< 11
Pr test Sample	Pr Implanted		23.4
	RBS		19±5

Comparing between the results of ICP-Ms and RBS, quantitative agreement is not good. $Y(RBS)/Y(ICP) = 0.15 \sim 1.63$ for ¹³³Cs < 0.15 for ¹⁴¹Pr

- Measurement points of ICP-MS and RBS are different?
- may be due to the local distribution of ¹⁴¹Pr

cut

Non-uniform distribution of Pr (XRF @ SPring-

XRF study shows: Existing probability of Pr strongly depends on location Average value of Pr in 13-4 4.4×10¹³ atoms/cm²

8)

100 micron beam;SP-24, 13-4 Point 4-4 (Much Pr detection) 2 3 4 5 - Point 3-4(Pr detection) 13-4 1200 - Point 6-4(No Pr) 1000 4X10¹⁴/cm² Pr 100µ m 800 100µ majuno 1X10¹⁴/cm² Much Pr detection 600 Pr detection Cs No Pr 400 200 0 3.5 4.5 5.5 5 Energy(keV)

Y. Iwamura et al., *Condensed Matter Nuclear Science*, World Scientific, New Jersey, p.178, 2006.

RBS spectrum : with D₂ gas permeation Summed spectrum of foreground samples

BG: mainly Pt impurity in thick Pd ~ 100 ppm→BG determine a detection limit. ¹³³Cs : distributed 0 - 80 nm in depth ^{nat}W: distributed 0 - 80 nm in depth contamination of W (182,183,184,186) of multilayer (1) A tiny peak at A=141 (¹⁴¹Pr) ¹⁴¹Pr exists on the surface. not observed for without D consistent with MHI report

)) Dt region, peole structure

W & Pt in Pd-CaO Multilayer

RBS spectrum : with D₂ gas permeation Summed spectrum of foreground samples

BG: mainly Pt impurity in thick Pd ~ 100 ppm→BG determine a detection limit. ¹³³Cs : distributed 0 - 80 nm in depth ^{nat}W: distributed 0 - 80 nm in depth contamination of W (182,183,184,186) of multilayer (1) A tiny peak at A=141 (¹⁴¹Pr) ¹⁴¹Pr exists on the surface. not observed for without D consistent with MHI report

19

RBS spectrum Cs Doped multilayer without D₂ permeation

RBS spectrum Cs Doped multilayer after D2 permeation

RBS spectrum Cs Doped multilayer after D₂ permeation

What is a peak A=192 Os? Ir?, Pt?

Conclusion

1.We performed Rutherford Backscattering Spectroscopy (RBS) to identify ¹⁴¹Pr for direct nuclear mass assignment.

2. For FG samples, we could identify the ¹⁴¹Pr events as well as ¹³³Cs, although the statistics is not enough. A comparison of the results between ICP-Ms and RBS shows that a quantitative agreement is not good.

Y(RBS)/Y(ICP) = $0.15 \sim 1.63$ for ¹³³Cs < 0.15 for ¹⁴¹Pr

25

 \rightarrow Measurement points of ICP-MS and RBS are different ?

 \rightarrow may be due to the local distribution of ¹⁴¹Pr

3. A broad peak indicating the existence of a nuclide with mass number around 192 was observed. There is a possibility that the impurity W in Pd/CaO multi-layer complex was transmuted into the elements of mass around 192 RBS measurement was partially supported by IMPACT Program of Council for Science, Technology and Innovation in 2015. Program name is "Reduction and Resource Recycle of High Level Radioactive Wastes with Nuclear Transmutation".

The authors would like to thank Mr. Ryo Tajima, Dr.Yuki Honda, and Prof. Hidetoshi Kikunaga for their corporations on RBS analysis, Research Center for Electron Photon Science, Tohoku University and Mr. Hideki Yoshino and Mr. Masanao Hattori for their supports.

W+4d

$$^{183}W(19\%) + 4d \rightarrow ^{191}Pt$$
 ($\tau_{1/2} = 2.8 d$)

