Calculation of the phonon-nuclear coupling matrix element for Ta-181

Peter L Hagelstein Massachusetts Institute of Technology

Introduction

- Have been interested in the development of a model for anomalies in condensed matter nuclear science for many years
- One big problem is the coupling between the internal nuclear degrees of freedom and the lattice
- A few years ago we found a relativistic interaction that couples vibrations to the internal nuclear degrees of freedom
- Another big problem concerns energy exchange between the nucleus and the lattice
- 15 years ago we found a mechanism capable of coherent upconversion and down-conversion for energy exchange

Phonon-nuclear interaction

$\hat{H} = \sum_{j} \boldsymbol{\alpha}_{j} \cdot c \left[\mathbf{p}_{j} - q_{j} \mathbf{A}(\mathbf{r}_{j}) \right] + \sum_{j} \beta_{j} m c^{2} + \sum_{j < k} \hat{V}_{jk} \left(\mathbf{r}_{k} - \mathbf{r}_{j} \right) + \sum_{j} q_{j} \Phi(\mathbf{r}_{j})$

Partial Foldy-Wouthuysen transformation

 $\hat{H}' = e^{i\hat{S}} \left(\hat{H} - i\hbar \frac{\partial}{\partial t} \right) e^{-i\hat{S}}$ $= \hat{H} + i \left[\hat{S}, \hat{H} \right] - \frac{1}{2} \left[\hat{S}, \left[\hat{S}, \hat{H} \right] \right] + \dots - \hbar \frac{\partial \hat{S}}{\partial t} - \frac{i}{2} \left[\hat{S}, \hbar \frac{\partial \hat{S}}{\partial t} \right] + \dots$

$$\hat{S} = -i \frac{1}{2Mc} \sum_{j} \beta_{j} \boldsymbol{\alpha}_{j} \cdot \left[\hat{\mathbf{P}}_{j} - Q \mathbf{A}(\mathbf{R}) \right]$$

$$\hat{H}' = \frac{\left|\hat{\mathbf{P}} - Q\mathbf{A}\right|^{2}}{2M} \frac{1}{N} \sum_{j} \beta_{j} + Q\Phi - \frac{\hbar Q}{2M} \frac{1}{N} \sum_{j} \beta_{j} \hat{\mathbf{\Sigma}}_{j} \cdot \mathbf{B} - \frac{\hbar^{2} Q}{8M^{2} c^{2}} \nabla \cdot \mathbf{E} + \frac{\hbar Q}{8M^{2} c^{2}} \sum_{j} \hat{\mathbf{\Sigma}}_{j} \cdot \left[\left(\hat{\mathbf{P}} - Q\mathbf{A}\right) \times \mathbf{E} - \mathbf{E} \times \left(\hat{\mathbf{P}} - Q\mathbf{A}\right)\right]$$

internal nuclear
$$+\sum_{j}\beta_{j}mc^{2} + \sum_{j}\alpha_{j} \cdot c\hat{\pi}_{j} + \sum_{j < k}\hat{V}_{jk}$$
structure

$$+\sum_{j}\left[q_{j}\Phi\left(\mathbf{R}+\boldsymbol{\xi}_{j}\right)-\frac{Q}{N}\Phi\left(\mathbf{R}\right)\right]-\sum_{j}\boldsymbol{\alpha}_{j}\cdot c\left[q_{j}A\left(\mathbf{R}+\boldsymbol{\xi}_{j}\right)-\frac{Q}{N}A\left(\mathbf{R}\right)\right]$$
$$+\sum_{j}\beta_{j}\frac{\left(\hat{\mathbf{P}}-Q\mathbf{A}\right)\cdot\hat{\boldsymbol{\pi}}_{j}}{M}+\frac{1}{2Mc}\sum_{j
$$+\cdots$$$$

where

$$\mathbf{a} \cdot c \hat{\mathbf{P}} = \left\{ \sum_{j} \beta_{j} \frac{\hat{\boldsymbol{\pi}}_{j}}{M} + \frac{1}{2Mc} \sum_{j < k} \left[\left(\beta_{j} \boldsymbol{\alpha}_{j} + \beta_{k} \boldsymbol{\alpha}_{k} \right), \hat{V}_{jk} \right] \right\} \cdot \hat{\mathbf{P}}$$

Thinking about the result

- Relativistic model with Dirac phenomenology for protons and neutrons gives phonon-nuclear coupling
- The math is clear, but we would like some intuition
- Dominant coupling is due to boost of nucleon-nucleon interaction

Coulomb and Breit interaction, rest frame

$$\hat{H} = \beta_1 mc^2 + \boldsymbol{\alpha}_1 \cdot c\hat{\boldsymbol{\pi}}_1 + \beta_2 mc^2 + \boldsymbol{\alpha}_2 \cdot c\hat{\boldsymbol{\pi}}_2 + \frac{q_1 q_2}{4\pi\varepsilon_0} \left\{ \frac{1}{r_{12}} - \frac{1}{2} \left[\frac{\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2}{r_{12}} + \frac{(\boldsymbol{\alpha}_1 \cdot c\mathbf{r}_{12})(\boldsymbol{\alpha}_2 \cdot c\mathbf{r}_{12})}{r_{12}^3} \right] \right\}$$

Coulomb and Breit interaction, boosted frame

$$a \rightarrow \frac{\mathbf{v}}{c}$$
 in rest frame
 $a \rightarrow \frac{\mathbf{v}}{c} + \frac{\mathbf{P}}{Mc}$ in moving frame

$$\hat{H} \rightarrow \beta_{1}mc^{2} + \boldsymbol{\alpha}_{1} \cdot c\hat{\boldsymbol{\pi}}_{1} + \beta_{2}mc^{2} + \boldsymbol{\alpha}_{2} \cdot c\hat{\boldsymbol{\pi}}_{2}$$

$$+ \frac{q_{1}q_{2}}{4\pi\varepsilon_{0}} \left\{ \frac{1}{r_{12}} - \frac{1}{2} \left[\frac{\left(\boldsymbol{\alpha}_{1} + \frac{\hat{\mathbf{P}}}{Mc}\right) \cdot \left(\boldsymbol{\alpha}_{2} + \frac{\hat{\mathbf{P}}}{Mc}\right)}{r_{12}} + \frac{\left(\left(\boldsymbol{\alpha}_{1} + \frac{\hat{\mathbf{P}}}{Mc}\right) \cdot c\mathbf{r}_{12}\right) \left(\left(\boldsymbol{\alpha}_{2} + \frac{\hat{\mathbf{P}}}{Mc}\right) \cdot c\mathbf{r}_{12}\right)}{r_{12}^{3}} \right] \right\}$$

Keep lowest order terms...

$$\begin{aligned} \hat{H} &\rightarrow \beta_{1}mc^{2} + \boldsymbol{\alpha}_{1} \cdot c\hat{\boldsymbol{\pi}}_{1} + \beta_{2}mc^{2} + \boldsymbol{\alpha}_{2} \cdot c\hat{\boldsymbol{\pi}}_{2} \\ &+ \frac{q_{1}q_{2}}{4\pi\varepsilon_{0}} \left\{ \frac{1}{r_{12}} - \frac{1}{2} \left[\frac{\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}}{r_{12}} + \frac{(\boldsymbol{\alpha}_{1} \cdot c\mathbf{r}_{12})(\boldsymbol{\alpha}_{2} \cdot c\mathbf{r}_{12})}{r_{12}^{3}} \right] \right\} \\ &- \frac{1}{2Mc} \frac{q_{1}q_{2}}{4\pi\varepsilon_{0}} \left[\frac{\hat{\mathbf{P}} \cdot \boldsymbol{\alpha}_{1}}{r_{12}} + \frac{\hat{\mathbf{P}} \cdot \boldsymbol{\alpha}_{2}}{r_{12}} + \frac{(\hat{\mathbf{P}} \cdot c\mathbf{r}_{12})(\boldsymbol{\alpha}_{2} \cdot c\mathbf{r}_{12})}{r_{12}^{3}} + \frac{(\boldsymbol{\alpha}_{1} \cdot c\mathbf{r}_{12})(\hat{\mathbf{P}} \cdot c\mathbf{r}_{12})}{r_{12}^{3}} \right] \end{aligned}$$

Now evaluate the coupling term

$$\frac{1}{2Mc} \sum_{j < k} \left[\left(\beta_j \boldsymbol{\alpha}_j + \beta_k \boldsymbol{\alpha}_k \right) \cdot \hat{\mathbf{P}}, \hat{V}_{jk} \right] = \\ -\frac{1}{2Mc} \frac{q_1 q_2}{4\pi\varepsilon_0} \left[\frac{\hat{\mathbf{P}} \cdot \boldsymbol{\alpha}_1}{r_{12}} \beta_2 + \frac{\hat{\mathbf{P}} \cdot \boldsymbol{\alpha}_2}{r_{12}} \beta_1 + \frac{\left(\hat{\mathbf{P}} \cdot c\mathbf{r}_{12} \right) \left(\boldsymbol{\alpha}_2 \cdot c\mathbf{r}_{12} \right)}{r_{12}^3} \beta_1 + \frac{\left(\boldsymbol{\alpha}_1 \cdot c\mathbf{r}_{12} \right) \left(\hat{\mathbf{P}} \cdot c\mathbf{r}_{12} \right)}{r_{12}^3} \beta_2 \right]$$

Thinking

- •Things begin to become clear...
- •What the linear coupling term is doing is fixing the magnetic interaction
- •...so that it is correct when the composite is in motion!

Importance of Ta-181

Lowest energy nuclear transitions

Nucleus	Excited state	half-life	$\operatorname{multipolarity}$
	energy (keV)		
201 Hg	1.5648	$81 \mathrm{ns}$	M1+E2
$^{181}\mathrm{Ta}$	6.240	$6.05~\mu{\rm s}$	E1
$^{169}\mathrm{Tm}$	8.41017	$4.09~\mathrm{ns}$	M1+E2
$^{83}\mathrm{Kr}$	9.4051	$154.4 \ \mathrm{ns}$	M1+E2
$^{187}\mathrm{Os}$	9.75	$2.38 \mathrm{~ns}$	M1(+E2)
$^{73}\mathrm{Ge}$	13.2845	$2.92~\mu{\rm s}$	E2
57 Fe	14.4129	$98.3 \ \mathrm{ns}$	M1+E2

Lowest energy E1 transitions

isotope	E(keV)	$T_{1/2}$	$\operatorname{multipolarity}$
Ta-181	6.237	$6.05 \ \mu sec$	E1
Dy-161	25.65135	29.1 ns	E1
Gd-157	63.929	$0.46 \ \mu sec$	E1
Dy-161	74.56668	3.14 ns	E1
Gd-155	86.5479	6.50 ns	E1
Eu-153	97.43100	0.198 ns	E1
Dy-161	103.062	0.60 ns	E1
Gd-155	105.3083	1.16 ns	E1
F-19	109.9	$0.591 \mathrm{~ns}$	E1
Dy-161	131.8	0.145 ns	[E1]
Eu-153	151.6245	$0.36 \ \mathrm{ns}$	E1

Thinking

- Phonon-nuclear interaction has E1 multipolarity (M2, E3, M4... at higher order)
- Ta-181 has the lowest energy E1 transition from ground state of all stable nuclei
- Low energy transitions favored in up-conversion and down-conversion models

Ta-181 nuclear states

Deformed nuclei

Spherical (No deformation)

(Deformed)

What about Ta-181

- Ta-181 nucleus is prolate spheroidal
- Well studied in the early literature
- Nuclear quadrupole deformation can be inferred approximately from (large) quadrupole moment in NMR studies
- Low-lying nuclear states modeled as single proton orbitals in a deformed attractive nuclear core
- Parameterization of the nuclear surface:

$$R(\theta) = c(\beta_2, \beta_4) R_0 \left[1 + \beta_2 Y_{20}(\theta, \phi) + \beta_4 Y_{40}(\theta, \phi) \right]$$

Model for proton states

Thinking about the model

- Model for proton in deformed nucleus is simplest imaginable
- Closely related to earlier spherical models
- Philosophically consistent with electron model in atom
- Deformed nuclear potential models available in the literature
- Deformation models readily available
- Deformed Coulomb interaction easily computed (assume uniform positive background charge density inside nucleus)
- Parameterization available for nuclear spin-orbit interaction

Woods-Saxon potential for Ta-181

Deformed nuclear potential

ρ

Coupled channel model

Coupled-channel approach

Write out single-proton wave function in terms of channels

$$\Psi = \sum_{lm} \sum_{m_s} |l, m\rangle |s, m_s\rangle \frac{P_{lmm_s}(r)}{r}$$

Work with Schrodinger equation

$$E\Psi = \hat{H}\Psi$$

split into the different channels

$$E\langle s, m_s lm | \Psi = \sum_{l.m.} \sum_{m_s'} \langle s, m_s lm | \hat{H} | s, m_s', l', m' \rangle \langle s, m_s' l'm' | \Psi$$

Coupled-channel equations

With no spin-orbit interaction can work with

$$EP_{lm}(r) = \left[-\frac{\hbar^2}{2M}\frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2Mr^2} + \langle l,m|V|l,m\rangle\right]P_{lm}(r)$$
$$+ \sum_{l'm'} \langle l,m|V|l',m'\rangle P_{l'm}(r)$$

We were able to get good results with this

Test for spherical problem

index	E_{Dudek} (MeV)	$\begin{aligned} E_{N,100}\\ (R_{max} = 18) \end{aligned}$	$\begin{aligned} E_{N,100}\\ (R_{max} = 16) \end{aligned}$	$\begin{aligned} E_{N,100}\\ (R_{max} = 14) \end{aligned}$	$\begin{aligned} E_{N,100}\\ (R_{max} = 12) \end{aligned}$
1s	-33.4423	-33.441766	-33.441877	-33.441630	-33.442284
1d	-24.5499	-24.549232	-24.548302	-24.547221	-24.546930
2s	-22.0258	-22.041675	-22.037155	-22.032858	-22.029881
1g	-12.1211	-12.118870	-12.117202	-12.115531	-12.114451
2d	-7.9762	-8.002365	-7.994905	-7.988063	-7.981666
3s	-6.4807	-6.554117	-6.536953	-6.521485	-6.506343

Table 1. Test of Dudek's code against the new code in the case of a spherical potential with no spin-orbit interaction. E_{Dudek} are results for the Dudek code; and E_N are numbers we obtained with our code with no spin-orbit coupling, with 100 points and different values for R_{max} .

Test for deformed problem

index	E_{Dudek}	$E_{N,100}$	$E_{N,100}$	$E_{N,100}$	$E_{N,100}$
	(MeV)	$(R_{max} = 18)$	$(R_{max} = 16)$	$(R_{max} = 14)$	$(R_{max} = 12)$
$1s_{m=0}$	-33.4405	-33.441232	-33.440791	-33.440187	-33.439678
$1d_{m=0}$	-24.8610	-24.861553	-24.860265	-24.858785	-24.857710
$1d_{m=1}$	-24.6796	-24.679708	-24.678440	-24.677064	-24.675922
$2s_{m=0}$	-21.9604	-21.977080	-21.972089	-21.967546	-21.963552
$1g_{m=0}$	-12.5845	-12.582936	-12.580976	-12.578933	-12.577239
$1g_{m=1}$	-12.5119	-12.510012	-12.508072	-12.506065	-12.504359
$2d_{m=0}$	-8.5715	-8.600592	-8.592264	-8.584514	-8.576888
$2d_{m=1}$	-8.1469	-8.172155	-8.164519	-8.157534	-8.150449

Table 2. Comparison of orbital energies from the Dudek code compared with results from my code for $\beta_2 = 0.05$ with different numbers of radial points, and no spin-orbit interaction.

Test for deformed problem

index	E_{Dudek}	$E_{N,100}(l_{max} = 6)$	$E_{N,100}(l_{max} = 8)$	$E_{N,100}(l_{max} = 10)$
	(MeV)	$(R_{max} = 14)$	$(R_{max} = 14)$	$(R_{max} = 14)$
$1s_{m=0}$	-33.3187	-33.317645	-33.317779	-33.317784
$1d_{m=0}$	-27.8181	-27.814070	-27.817376	-27.817486
$1d_{m=1}$	-25.3873	-25.378282	-25.383892	-25.384111
$2s_{m=0}$	-19.2554	-19.240770	-19.259938	-19.260824
$1g_{m=0}$	-18.0380	-17.948398	-18.035597	-18.039572
$1g_{m=1}$	-16.3821	-16.206008	-16.371370	-16.379615
$2d_{m=0}$	-11.6715	-11.482434	-11.666691	-11.679624
$2d_{m=1}$	-7.2382	-7.046577	-7.219741	-7.239901
$2g_{m=0}$	-5.7574	-4.807565	-5.641637	-5.766948

Table 5. Comparison of orbital energies from the Dudek code compared with results from my code for $\beta_2 = 0.50$ with 100 radial points, no spin-orbit interaction, and different numbers of angular momenta.

Spin-orbit interaction

Basic spin-orbit interaction

$$\hat{V}_{so} = \frac{\lambda}{\hbar} \left(\frac{\hbar}{2Mc} \right)^2 \nabla U \cdot \left(\mathbf{\sigma} \times \hat{\mathbf{p}} \right)$$

Looks simple enough... But we need to calculate the interaction potentials for the coupled channel equations. So, we have to expand things out in an appropriate form:

$$= -\frac{\lambda}{\hbar} \left(\frac{\hbar}{2Mc}\right)^2 \frac{1}{r} \frac{\partial U}{\partial r} \boldsymbol{\sigma} \cdot \hat{\mathbf{L}}$$

$$+i\lambda\left(\frac{\hbar}{2Mc}\right)^{2}\frac{1}{r}\frac{\partial U}{\partial\theta}\left[\sigma_{x}\left(\sin\phi\frac{\partial}{\partial r}+\frac{\cos\phi}{r}\frac{\partial}{\partial\phi}\right)+\sigma_{y}\left(-\cos\phi\frac{\partial}{\partial r}+\frac{\sin\phi}{r}\frac{\partial}{\partial\phi}\right)+\sigma_{z}\frac{\cot\theta}{r}\frac{\partial}{\partial\phi}\right]$$

Approximation

The full spin-orbit interaction is complicated. Since the deformation is not so great, why not work with the simpler part which will be dominant...

$$V_{so} \rightarrow -\frac{\lambda}{\hbar} \left(\frac{\hbar}{2Mc}\right)^2 \frac{1}{r} \frac{\partial U}{\partial r} \boldsymbol{\sigma} \cdot \hat{\mathbf{L}}$$

Test for spherical problem

index	E_{Dudek}	$E_{N,100}$	$E_{N,100}$	$E_{N,100}$	$E_{N,100}$
	(MeV)	$(R_{max} = 18)$	$(R_{max} = 16)$	$(R_{max} = 14)$	$(R_{max} = 12)$
$1s_{1/2}$	-33.4423	-33.441766	-33.441877	-33.441630	-33.442284
$1d_{5/2}$	-24.8964	-24.892350	-24.891437	-24.890375	-24.890089
$1d_{3/2}$	-24.0507	-24.054716	-24.053756	-24.052644	-24.052339
$2s_{1/2}$	-22.0258	-22.041675	-22.037155	-22.032858	-22.029881
$1g_{9/2}$	-13.2043	-13.192241	-13.190589	-13.188941	-13.187862
$1g_{7/2}$	-10.8316	-10.840742	-10.839028	-10.837309	-10.836209
$2d_{5/2}$	-8.4568	-8.478680	-8.471316	-8.464560	-8.458262
$2d_{3/2}$	-7.2581	-7.291413	-7.283792	-7.276802	-7.270245
$3s_{1/2}$	-6.4807	-6.554117	-6.536953	-6.521485	-6.506343

Table 3. Test of the Dudek code against our codes for the spherical version of the problem; these are proton orbital energies focusing on the even states. E_{Dudek} are results with the Dudek code; and for the E_N numbers we used the new code including spin-orbit coupling.

Test for deformed problem

index	E_{Dudek}	$E_{N,100}(l_{max} = 6)$	$E_{N,100}(l_{max} = 8)$	$E_{N,100}(l_{max} = 10)$
	(MeV)	$(R_{max} = 14)$	$(R_{max} = 14)$	$(R_{max} = 14)$
$1s_{m=0}$	-33.3187	-33.324191	-33.324336	-33.324342
$1d_{m=0}$	-27.8562	-27.941897	-27.946091	-27.946233
$1d_{m=1}$	-25.1361	-25.059179	-25.064506	-25.064719
$2s_{m=0}$	-19.2770	-19.280507	-19.315717	-19.317592
$1g_{m=0}$	-18.2630	-18.235448	-18.342173	-18.347647
$1g_{m=1}$	-15.9150	-15.702723	-15.842560	-15.849615
$2d_{m=0}$	-11.7023	-11.516698	-11.710765	-11.726053
$2d_{m=1}$	-6.9487	-6.738900	-6.954404	-7.011201
$2g_{m=0}$	-6.4394	-5.167123	-6.239576	-6.389641

Table 6. Comparison of orbital energies from the Dudek code compared with results from my code for $\beta_2 = 0.50$ with 100 radial points, including incomplete spin-orbit interaction, and different numbers of angular momenta.

Thinking

- So, the new code is running
- Gives good answers for spherical problem, with and without spin-orbit interaction
- Gives good answers for deformed problem without spin-orbit interaction
- For deformed problem with spin-orbit interaction we use an incomplete spin-orbit interaction
- Code runs 3x faster, gives answers with minor errors
- Acceptable for what we want to do with it

Ta-181 states
Energy levels from exp't

energy (keV)	J^{π}	$[Nn_z\Lambda]$	orbital	rotational state
0	$7/2^{+}$	[404]	$1g_{7/2}$	[404] J=7/2
6.237	$9/2^{-}$	[514]	$1h_{11/2}$ deformed	[514] J=9/2
136.262	$9/2^{+}$,	[404] J=9/2
158.554	$11/2^{-}$			[514] J=11/2
301.662	$11/2^+$			[404] J=11/2
337.54	$13/2^{-}$			[514] J=31/2
482.168	$5/2^{+}$	[402]	$2d_{5/2}$	[402] J=5/2
495.184	$13/2^{+}$,	[404] J=13/2
542.51	$15/2^{-}$			[514] J=15/2
590.06	$7/2^{+}$			[402] J=7/2
615.19	$1/2^{+}$	[411]	$3s_{1/2}$	[411] J=1/2
618.99	$3/2^{+}$,	[411] J=3/2
716.659	$15/2^+$			[404] J=15/2
727.31	$9/2^{+}$			[402] J=9/2
772.97	$17/2^{-}$			[514] J=15/2

Table 9. Low-lying energy levels for ¹⁸¹Ta.

Thinking

- Lots of low-lying states
- Want to understand them
- Some intrinsic states (no rotation)
- Some states which are rotated versions of intrinsic states

Energy levels from exp't

energy (keV)	J^{π}	$[Nn_z\Lambda]$	orbital	rotational state
0	$7/2^{+}$	[404]	$1g_{7/2}$	[404] J=7/2
6.237	$9/2^{-}$	[514]	$1h_{11/2}$ deformed	[514] J=9/2
136.262	$9/2^{+}$			[404] J=9/2
158.554	$11/2^{-}$			[514] J=11/2
301.662	$11/2^+$			[404] J=11/2
337.54	$13/2^{-}$			[514] J=31/2
482.168	$5/2^{+}$	[402]	$2d_{5/2}$	[402] J=5/2
495.184	$13/2^{+}$,	[404] J=13/2
542.51	$15/2^{-}$			[514] J=15/2
590.06	$7/2^{+}$			[402] J=7/2
615.19	$1/2^{+}$	[411]	$3s_{1/2}$	[411] J=1/2
618.99	$3/2^{+}$,	[411] J=3/2
716.659	$15/2^{+}$			[404] J=15/2
727.31	$9/2^{+}$			[402] J=9/2
772.97	$17/2^{-}$			[514] J=15/2

Table 9. Low-lying energy levels for ¹⁸¹Ta.

Energy levels due to rotation

$$T_R = \frac{\hbar^2}{J} \left[J \left(J + 1 \right) - J_{\min} \left(J_{\min} + 1 \right) \right]$$

Rotational levels in Ta-181 associated with the 7/2+ ground state

Energy levels due to rotation

$$T_R = \frac{\hbar^2}{J} \left[J \left(J + 1 \right) - J_{\min} \left(J_{\min} + 1 \right) \right]$$

Rotational levels in Ta-181 associated with the 9/2- first excited state

Energy levels due to rotation

$$T_R = \frac{\hbar^2}{J} \left[J \left(J + 1 \right) - J_{\min} \left(J_{\min} + 1 \right) \right]$$

Rotational levels in Ta-181 associated with the [402] excited state

It works!

- Can understand low-lying levels of Ta-181
- See 4 intrinsic states, which correspond to single proton states in a deformed potential
- See lots of rotational states that can be identified as rotating versions of intrinsic states
- Transition we are interested in is between two different single proton intrinsic states

Deformation parameters

- Would like to run the codes to see if we can match the relative state energies
- This has been done before in the literature, so estimates for the parameters are known
- Start with quadrupole deformation

Working on β_2

Figure 4. Proton orbital energies as a function of β_2 with $\beta_4 = 0$, for ¹⁸¹Ta, using Dudek's universal model potential parameters.

No joy...

- We are getting the ground state 7/2+ state to be close to the 9/2- state
- But energy splitting is one the order of 1 MeV using deformation parameter similar to what is in the literature
- Probably need deformation at next order to do better...

Working on β_2 with β_4 = -0.038

β2

Seems to work

- Now we included β_4 = -0.038 to model a little bit of octupole deformation
- Now we get a crossing of the 7/2+ and 9/2- states at a reasonable value of β_{2}
- This looks good
- Wonder whether it is consistent with the observed electric quadrupole moment

Electric quadrupole moment

- For Ta-181 there are a number of measurements for the electric quadrupole moment
- Probably the most accurate ones are from measurements of the spectrum of muonic Ta
- From these measurements a value of 7.37 eb has been deduced
- We can check using

$$Q_0 = \frac{3}{\sqrt{5\pi}} eZR^2 \beta_2 \left(1 + \pi^2 \left(\frac{a}{R}\right)^2 + \frac{2}{7} \sqrt{\frac{5}{\pi}} \beta_2 \right)$$

Working on β_2

Figure 1. Quadrupole moment as a function of β_2 .

Thinking about comparison

- Based on the experimental observation of 7.37 eb, we would expect β_2 = 2.47
- Optimization based on the Dudek code including quadrupole and octupole terms gives a 7/2+ and 9/2- crossing for β_2 = 2.5
- The model is consistent
- OK, so this was well known as one of the successes of the Bohr model for deformed nuclei...

Phonon-nuclear interaction matrix element

Boosted spin-orbit interaction

- OK, so let's consider the boosted spin-orbit interaction, start with the simplest possible argument
- Unboosted spin-orbit interaction is

$$V_{so} = \frac{\lambda}{\hbar} \left(\frac{\hbar}{2Mc}\right)^2 \nabla U \cdot \left(\mathbf{\sigma} \times \hat{\mathbf{p}}\right)$$

• A boost is implemented using

 $\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}} + \frac{\hat{\mathbf{P}}}{N}$

• This leads to

$$\Delta V_{so} = \frac{\lambda}{\hbar} \left(\frac{\hbar}{2Mc}\right)^2 \nabla U \cdot \left(\boldsymbol{\sigma} \times \frac{\hat{\mathbf{P}}}{N}\right)$$

Relativistic phonon-nuclear interaction

• We would like to compare this with results from the Foldy-Wouthuysen transformation appropriate for a nonrelativistic model

$$\Delta \hat{V} = -\frac{1}{8Mmc^2} \sum_{l} \sum_{j < k} \left[\sigma_l \cdot \hat{\mathbf{P}}, \left[\sigma_l \cdot \hat{\mathbf{R}}_l, \hat{V}_{jk} \right] \right] - \frac{1}{8Mmc^2} \sum_{l} \sum_{j < k} \left[\sigma_l \cdot \hat{\pi}_l, \left[\sigma_l \cdot \hat{\mathbf{P}}, \hat{V}_{jk} \right] \right]$$

• Evaluating the commutators leads to

$$\Delta \hat{V} \rightarrow i \frac{1}{4Mmc^2} [\boldsymbol{\sigma}_k \times (\hat{\boldsymbol{\pi}}_k V_{jk})] \cdot \hat{\mathbf{P}}]$$

• This is similar to the boosted version in the previous slide

$$-i\lambda \frac{1}{4Mmc^2} \boldsymbol{\sigma} \cdot [(\hat{\pi}U) \times \mathbf{P}]$$

Thinking about the result

• There are lots of issues to consider...

- One is that the FW-transformation is giving a result that is similar in form to the boosted spin-orbit interaction
- Strictly speaking, this result is much smaller than the boosted spin-orbit interaction since it is actually a spin-orbit term rather than a boost of the spin-orbit interaction
- To do it right we would want to go back to the relativistic interaction, and carry out a F-W transformation
- However, for now we are happy since what we are trying to model is a boost of the spin-orbit interaction

Calculating the proton orbitals

• There are some technical issues about the details of the model; however, in the end the results are reasonable

index	E_{Dudek} (MeV)	$E_{N=100} \\ l_{max} = 10$
7/2+(1)	-13.3163	-13.455392
7/2+(2)	-6.3483	-6.289249
7/2+(3)	-1.9020	-2.067574
0/2 (1)	6 2458	6 425660
9/2 - (1)	-0.3400	-0.420000
9/2-(2)	2.9235	2.941132

Table 10. Orbital energies from the Dudek code compared with results from my code for a deformed version of the problem ($\beta_2 = 0.25$ and $\beta_4 = -0.038$) with a the old spin-orbit potential increased in magnitude to match the universal value.

Magnitude of the matrix element

• The phonon-nuclear coupling matrix element can be written as

$$\Delta V_{so} = \mathbf{a} \cdot c \hat{\mathbf{P}}$$

• with

$$\mathbf{a} = -\lambda \frac{\hbar}{4Mmc^3} \mathbf{\sigma} \times (\nabla U)$$

• For this model we estimate

$$|\mathbf{a}| = 1.29 \times 10^{-6}$$

• This estimate is within the range (but on the low side) of what was expected

Homonuclear diatomic Ta₂

To small to see splitting in Ta₂

Second-order interaction in Ta2:

$$\hat{U}_{12} = -\frac{Mc^2 (\hbar \omega_0)^2}{2 (\Delta E)^2} \frac{(\mathbf{a}_1 \cdot \mathbf{R}_{21}) (\mathbf{a}_2 \cdot \mathbf{R}_{21})}{|\mathbf{R}_{21}|^2}$$

Plug in numbers:

$$\frac{Mc^2 \left(\hbar \omega_0\right)^2}{2 \left(\Delta E\right)^2} \left|\mathbf{a}\right|^2 = 6 \times 10^{-12} \text{ eV}$$

Conclude coupling is too small to see in a Mossbauer experiment

Radiative decay

Radiative decay rate

- We can calculate the radiative decay rate for the transition as a test of the nuclear model
- We get

$$\gamma = \frac{4}{3} \frac{e^2}{4\pi\varepsilon_0} \frac{\omega^3}{\hbar c^3} \left| \left\langle \frac{9}{2} \right| \mathbf{r} \left| \frac{7}{2} \right\rangle \right|^2 = 3.89 \times 10^8 \text{ sec}^{-1}$$

Reasonably consistent with the Weisskopf estimate

$$\gamma_W = 10^{14} A^{2/3} E^3 = 7.76 \times 10^8 \text{ sec}^{-1}$$

Not close to the experimental value

$$\gamma_{\rm exp't} = 2.4 \times 10^3 \, {\rm sec}^{-1}$$

Large discrepancy

- Our simple model gives a fast decay rate of 3.89×10^8 , while experiment is probably below 2×10^3
- The ratio of theory to experiment is about 2x10⁵
- This indicates a serious problem
- Note that this is not the only transition where there is a disagreement
- Instructive to look at other transitions

Weisskopf vs experiment

Figure 3. Half-life as a function of the transition energy for odd A nuclei with an even number of neutrons; observed results (red circles); Weisskopf estimate (black circles); scaled estimate assuming $(\Delta E)^5$ scaling (blue line).

Thinking

- All E1 transitions at low energy are much slower than the Weisskopf estimate
- This was noted by Bethe in his 1937 review article
- Bethe noted that not dipolar response is expected for a system composed of particles with identical mass and charge, and that the strong force makes nuclei act this way
- Same problem for M1 and E2 transitions between intrinsic states
- For rotational transitions get fast E2 transition rates that agree with conventional decay rate calculation

Nilsson and coworkers

- In the development of the Bohr and Nilsson deformed nuclear models, an effort was made to resolve this problem
- Low-energy E1 transitions were analyzed within the Nilsson scheme
- Pairing corrections were included
- It was claimed possible to get systematic agreement between theory and experiment for many low-energy E1 radiative decay rates
- We were motivated in our calculations by these papers, hoping that we too could get good agreement

How does it work?

• The early papers started from a direct calculation of the radiative decay rate based on the deformed potential model

• A very small radiative decay rate (still much faster than experiment) was initially calculated from the deformed models

• Now, we are using a more sophisticated version of the same model, and we do not see this effect

• Conclude that reduction in radiative decay rate computed in the 1950s and early 1960s was due to a destructive interference effect

• In our version of the model the optimum solution is away from where the destructive interference occurs

Interference effect

0.01 0.1 1

Thinking

- We are using models from mid-1980s which do better for connecting with energy levels
- Much work on these models by nuclear theory groups active in 1970s through 1990s
- Can see interference effect which would reduce the radiative decay rate
- But interference effect is in a different region of parameter space than optimum for energy levels
- Nilsson's explanation is not robust
- We conclude that systematic difference is not due to interference effect

Pairing

- In the 1950s BCS theory emerged to account for superconductivity
- Similar model adopted to describe nuclear energy levels
- Get large amount of configuration interaction
- Pairing model allows one to include some of the configuration interaction in a simple way
- Estimates for pairing correction for radiative decay for Ta-181 transition near 25x reduction in rate
- No modern estimates available
- Pairing cannot account for 5 orders of magnitude

Thinking about a lattice R | ST model

Screening

- It would be simplest if screening by the core nucleons could explain the discrepancy
- However, Nilsson model, Hartree-Fock models, and Thomas-Fermi models all predict negligible screening by the core
- If restoring force were Coulombic, then could account for screening
- But if there is a strong force contribution then there is essentially no screening

Quantum gas vs liquid/solid

- No core screening expected at low order in a quantum gas model (Nilsson, Hartree-Fock, Thomas-Fermi...)
- Few (or no) relevant models studied based on quantum liquid or solid formulation
- Could imagine a new formulation where basic liquid or solid structure is determined by the strong force...
- •...and where charge mobility is developed through isospin exchange
- We are beginning to look at such a model
- Crystal lattice model is simplest example
Crystal model from Cook (1987)

R|ST model

Start with

$$\Psi = \psi(\{{\bf r}\})\Phi(\{\sigma\},\{\tau\})$$

Then separate according to

 $\lambda_R \psi(\{\mathbf{r}\}) = \langle \Phi(\{\sigma\}, \{\tau\}) | \hat{H} | \Phi(\{\sigma\}, \{\tau\}) \rangle \psi(\{\mathbf{r}\})$ $\lambda_{ST} \Phi(\{\sigma\}, \{\tau\}) = \langle \psi(\{\mathbf{r}\}) | \hat{H} | \psi(\{\mathbf{r}\}) \rangle \Phi(\{\sigma\}, \{\tau\})$

And make use of a lattice (or liquid) model in space for $\psi(\{r\})$

Make use of R|ST approach

- Three degrees of freedom in a nuclear model: space, spin and isospin
- Thinking of an approximation which models space through an approximately fixed lattice model
- ...and spin and isospin as dynamical variables
- Simple formulation
- Rigorous derivation possible

Progress so far

• A version of the model has been constructed for the case of a (simple) Hamada-Johnston nuclear potential model

- Can already see features of the model
- Strong force relevant for lattice structure, shape of nucleus
- Spin and isospin exchange within the lattice
- Means that charge is mobile even if the nucleons are approximated fixed in lattice sites
- Clear that derivation of modified Born and Nilsson type of models follow from this approach

Coherent contribution for central potential

$$\left\langle \Psi \middle| \sum_{\gamma < \delta} (\tau_{\gamma} \cdot \tau_{\delta}) (\sigma_{\gamma} \cdot \sigma_{\delta}) y_{C}(r_{\gamma \delta}) \middle| \Psi \right\rangle \rightarrow \frac{1}{2} \sum_{\alpha} \sum_{\beta} c^{*}(\alpha) c(\beta) \left\langle \left[\frac{1}{2} \sigma_{+}(\alpha) \sigma_{-}(\beta) + \frac{1 + \sigma_{z}(\alpha)}{2} \frac{1 + \sigma_{z}(\beta)}{2} \right] \left[\frac{1}{2} \frac{1 - \tau_{z}(\alpha)}{2} \frac{1 - \tau_{z}(\beta)}{2} + \tau_{-}(\alpha) \tau_{+}(\beta) \right] y_{C}(r_{\alpha \beta}) \right\rangle - \frac{1}{2} \sum_{\alpha} \sum_{\beta} c^{*}(\alpha) d(\beta) \left\langle \left[\frac{1 + \sigma_{z}(\alpha)}{2} \frac{1 - \sigma_{z}(\beta)}{2} \right] \left[\frac{1}{2} \frac{1 - \tau_{z}(\alpha)}{2} \frac{1 - \tau_{z}(\beta)}{2} + \tau_{-}(\alpha) \tau_{+}(\beta) \right] y_{C}(r_{\alpha \beta}) \right\rangle - \frac{1}{2} \sum_{\alpha} \sum_{\beta} d^{*}(\alpha) c(\beta) \left\langle \left[\frac{1 - \sigma_{z}(\alpha)}{2} \frac{1 + \sigma_{z}(\beta)}{2} \right] \left[\frac{1}{2} \frac{1 - \tau_{z}(\alpha)}{2} \frac{1 - \tau_{z}(\beta)}{2} + \tau_{-}(\alpha) \tau_{+}(\beta) \right] y_{C}(r_{\alpha \beta}) \right\rangle + \frac{1}{2} \sum_{\alpha} \sum_{\beta} d^{*}(\alpha) d(\beta) \left\langle \left[\frac{1}{2} \sigma_{-}(\alpha) \sigma_{+}(\beta) + \frac{1 + \sigma_{z}(\alpha)}{2} \frac{1 + \sigma_{z}(\beta)}{2} \right] \left[\frac{1}{2} \frac{1 - \tau_{z}(\alpha)}{2} \frac{1 - \tau_{z}(\beta)}{2} + \tau_{-}(\alpha) \tau_{+}(\beta) \right] y_{C}(r_{\alpha \beta}) \right\rangle$$

$$(96)$$

Screening and other issues

- This kind of model will show strong screening of electric fields
- Would be consistent with observed hindrance of E1 transitions (no other model is consistent)
- Also leads to larger effective masses for neutrons and protons
- Possible that this approach might give better agreement for intrinsic energy level predictions
- Could be used for electron and charged particle collisions, fusion and fission calculations

Conclusions

Conclusions I

- In our approach, phonon-nuclear interaction provides foundation for understanding CMNS
- In past few years have developed an understanding of how the coupling works
- This calculation is our first for a transition in a heavy nucleus
- Possible now to extend to other transitions
- Ta-181 has lowest energy E1 transition from ground state
- Now have estimate for strength of a.cP interaction
- Within range of what was expected

Conclusions II

- But uncertainties remain, since same model is not accurate for radiative decay
- If discrepancy for radiative decay due to screening, then could develop new model that screens...
- ...and use it to revisit the phonon-nuclear matrix element
- Still interested in connecting unambiguously with experiment!