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Energy localization in anharmonic lattices 

In the summer of 1953 Enrico Fermi, John Pasta, Stanislaw Ulam, and 

Mary Tsingou conducted numerical experiments (i.e. computer 

simulations) of a vibrating string that included a non-linear term 

(quadratic in one test, cubic in another, and a piecewise linear 

approximation to a cubic in a third). They found that the behavior of the 

system was quite different from what intuition would have led them to 

expect. Fermi thought that after many iterations, the system would 

exhibit thermalization, an ergodic behavior in which the influence of the 

initial modes of vibration fade and the system becomes more or less 

random with all modes excited more or less equally. Instead, the system 

exhibited a very complicated quasi-periodic behavior. They published 

their results in a Los Alamos technical report in 1955.

The FPU paradox was important both in showing the complexity of 

nonlinear system behavior and the value of computer simulation in 

analyzing systems.

https://en.wikipedia.org/wiki/Enrico_Fermi
https://en.wikipedia.org/wiki/John_Pasta
https://en.wikipedia.org/wiki/Stanislaw_Ulam
https://en.wikipedia.org/wiki/Mary_Tsingou
https://en.wikipedia.org/wiki/Thermalization
https://en.wikipedia.org/wiki/Equipartition_theorem
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory


Localized Anharmonic Vibrations (LAVs)

A. Ovchinnikov (1969)
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Sine-Gordon standing breather

is a swinging in time coupled 

kink-antikink 2-soliton solution.

Large amplitude moving 

sine-Gordon breather.

Discrete Breathers 

https://en.wikipedia.org/wiki/Sine-Gordon
https://en.wikipedia.org/wiki/Sine-Gordon


 
2

2 2 2

1

0

2 1 1
ln 1 tg ln 1 tg

2 2 2 2

n
n n

n

p
H ms u u

ms d

 









       
           
         



-1 1
022

0 0

2

2
tg tg

2 2
1

4

n n n n n

n

mu u u u u
d

d du

s

 





         

        
           

0d

1D crystal — Hirota lattice model

(nonlinear telegraph equations, 1973)

Equation of motion of Hirota lattice
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Standing strongly localized DB

Standing weakly localized DB

nu

nu

Bogdan, 2002
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The concept of LAV in regular lattices

is based on large anharmonic atomic

oscillations in Discrete Breathers

excited outside the phonon bands.
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DBs in metals Hizhnyakov et al (2011)



Standing DB in bcc Fe: d0=0.3 Å

D.Terentyev, V. Dubinko, A. Dubinko (2013)



Moving DB in bcc Fe: d0=0.4 Å, E= 0.3 eV

D.Terentyev, V. Dubinko, A. Dubinko (2013)



Visualization of the PdH fcc Lattice (NaCl type)



Visualization of the PdH fcc Lattice Oscillations at 
T=100 K



Visualization of the PdH fcc Lattice Oscillations at 

T=1000K



Gap breathers in NaCl type lattices, Dmitriev et al (2010)

NaCl-type MH /ML= 10 at temperatures 

T = (a) 0, (b) 155, (c) 310, and (d) 620 K

DOS for PdD0.63 and PdH0.63: MH /ML= 50; 100

D pressure of 5 GPa and T=600 KICCF19

Phonon 

Gap
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MD modeling of gap DBs in diatomic crystals at elevated temperatures
Hizhnyakov et al (2002), Dmitriev et al (2010)

* 70t   0.1 1000K eV K A3B type crystals MH /ML= 10

In NaI and KI crystals Hizhnyakov et al has

shown that DB amplitudes along <111>

directions can be as high as 1 Å, and t*/Θ~104

*

, 5.1B nK K 

Lifetime and concentration of

high-energy light atoms

increase exponentially with

increasing T



MD modeling of gap DBs in diatomic crystals at elevated temperatures
A3B type crystals, Kistanov, Dmitriev (2014), 
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LAV effect (1): peiodic in time modulation of the 

potential barrier height



Reaction-rate theory with account of the crystal 

anharmonicity
Dubinko, Selyshchev, Archilla, Phys. Rev. E. (2011)

 TkVI Bm0

Kramers rate is amplified: 

Bessel function



How extend LAV concept 

to include 

Quantum effects,

Tunneling

?



Tunneling as a classical escape rate induced by the 

vacuum zero-point radiation, A.J. Faria, H.M. Franca, R.C. 

Sponchiado Foundations of Physics (2006)

The Kramers theory is extended in order to take into account the 

action of the thermal and zero-point oscillation (ZPO) energy. 
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https://arxiv.org/find/quant-ph/1/au:+Sponchiado_R/0/1/0/all/0/1


Can we increase 

the quantum noise strength, 

i.e. ZPO energy?

When we heat the system we increase 

temperature, i.e. we increase  the 

thermal noise strength



Stationary harmonic potential
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Time-periodic modulation of the double-well shape 

changes (i) eigenfrequency and (ii) position of the wells



Quasi-energy in time-periodic systems
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Consider the Hamiltonian which is periodic in time.

It can be shown that Schrodinger equation has class of solutions in 

the form:

where Is the quasi-energy

Time-periodic driving of the harmonic oscillator with non resonant frequencies Ω ≠

2ω0 renormalizes its energy spectrum, which remains equidistant, but the quasi-

energy quantum becomes a function of the driving frequency𝜆 𝜔 𝑡



Time-periodic modulation of the double-well shape 

changes (i) eigenfrequency and (ii) position of the wells



DB frequency and eigenfrequency of the potential wells of 

neighboring D ions in PdD (Dubinko, ICCF 19)

DB polarized along the close-packed 

D-D direction <110> 

Ω = 2ω0
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LENR 2017

Non-stationary harmonic potential with 

time-periodic eigenfrequency Ω = 2ω0

  0 0cosh
2 2

ZPO

g t
E t

 


  0

0

cosh
2 2

ZPO

g t
t

m




 



  0
0

1
cosh

2 2theor

g t
E t n




 
  

 

 
 

 
22 2 2

2 2 20 0
02 2

0 0

1

2 2num

tY Z
E t n Y Z

 


 

  
     

  

     

   

2 0

0 0, 0 1

Y t t Y t

Y Y

  


 

   2 2
0 01 cos 2t g t     

     

   

2 0

0 1, 0 0

Z t t Z t

Z Z

  


 

0.1, 0g n 

1g  General case: n = 0,1,2, …



0

n
E



t

T

0.1g 



Non-stationary harmonic potential with 

time-periodic shifting of the well position at Ω = ω0
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Uncertainty Relations (UR)
Heizenberg (1927)

Generalization of the UR 
Schrödinger (1930); Robertson (1930)

Correlator

Well-known and well-forgotten quantum mechanics

ICCF19
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Phys. Letters (1980)

Correlation coefficient

Effective Plank constant
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Can CORRELATIONS make the barrier transparent ?!

Vysotskii et al, Eur. Phys. J. A (2013):



Correlations Coefficient for the parametric resonance Ω = 2ω0
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100 cycles50 cycles10 cycles

Tunneling: Numerical solution of Schrödinger equation

Stationary: tKramers~105 cycles at Vbarrier=12E0

Time-periodically driven: Ω = 1.5 ω0 , g = 0.2

10 cycles 50 cycles 100 cycles



Extreme example –

Low Energy Nuclear 

Reactions (LENR) 
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HOWEVER, is the Coulomb barrier that huge in the lattice ?

Why LENR is unbelievable?
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Willis Eugene Lamb

Nobel Prize 1955

Julian Schwinger

Nobel Prize 1965

R.H. Parmenter, W.E. Lamb, 

Cold fusion in Metals (1989)

Electron screening

J. Schwinger, Nuclear Energy in an 

Atomic Lattice (1990)

Lattice screening



J. Schwinger, Nuclear Energy in an Atomic Lattice I, Z. Phys. D 15, 221 (1990)
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T0 is the mean lifetime of the phonon vacuum state before

releasing the nuclear energy directly to the lattice (no radiation!):

J. Schwinger, Nuclear Energy in an Atomic Lattice The First Annual Conference 

on Cold Fusion. University of Utah Research Park, Salt Lake City (1990)
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Schwinger, Nuclear Energy in an Atomic Lattice I, Z. Phys. D 15, 221 (1990).

Parmenter, Lamb, Cold fusion in Metals, Proc. Natl. Acad. Sci. USA, v. 86, 8614-

8617 (1989).

0 1 2 3

0.2

0.4

0.6

0.8

N=0

N=10

N=17

Effective potential (x10 eV) by eq. (44) [P&L]

Harmonic potential (x10 eV)

Effective potential (x10 eV) at N=17 by eq. (45) [Schwinger]

DISPLACEMENT FROM EQUILIBRIUM POSITION (Angstr)

L
O

C
A

L
IZ

A
T

IO
N

 P
R

O
B

A
B

B
IL

IT
Y

 D
IS

T
R

IB
U

T
IO

N

2.5 R0

0 5 10 15 20
0

50

100

150

w0=50 THz (Rowe et al [19])

w0=320 THz (Schwigner [21])

NUMBER OF PERIODS

V
m

ax
 (

e
V

)

Dubinko, Laptev (2016):

0
0

0

cosh
2 2

g t

m




 



Schwinger, Nuclear energy in an atomic lattice. Proc. Cold Fusion Conf. (1990)

Dubinko, Laptev, Chemical and nuclear catalysis driven by LAVs, LetMat (2016)
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Parameter Value

D-D equilibrium spacing in PdD, b (Å) 2.9

Fusion energy,  (MeV) 23.8

Mean DB energy,  (eV) 1

DB oscillation frequency, 𝜔𝐷𝐵 (THz) 20

Critical DB lifetime, 𝜏𝐷𝐵 (ps/cycles) 10/100

Quodon excitation energy  (eV) 0.8

Quodon excitation time, 𝜏𝑒𝑥 (ps/cycles) 1/10

Quodon propagation range, 𝑙𝑞 (nm) 2.9

Cathod size/thickness (mm) 5

LENR power density under D2O electrolysis 

BNC can provide up to 1014

“collisions” per cm3 per second

Table 1
   *, , ,J

D D DB DB D DP T J K E T J E 



Where to look for 

Nuclear Active Environment?



LAV formation

Small Energy Gap  

is required for 

Nuclear Active Environment



Chemical and Nuclear catalysis

the role of disorder

“Cracks and small particles are the Yin and Yang of the cold fusion 

environment” E. Storms 

Structure of dimeric citrate synthase (PDB code

1IXE). Only α-carbons are shown, as spheres in a

color scale corresponding to the crystallographic B-

factors, from smaller (blue) to larger (red)

fluctuations [Dubinko, Piazza, 2014]



Chemical and Nuclear catalysis 

Nickel nanoparticles, Zhang and Douglas (2013)

Atomic configuration of a Ni nanoparticle of

2899 atoms at T = 1000 K. The atoms are

colored based on the potential energy and

their size is proportional to Debye–Waller

factor. Potential energy and DWF are time

averaged over a 130 ps time window,

corresponding to the time interval during

which the strings show maximum length.

Map of the local Debye–Waller factor showing

the heterogeneity of the atomic mobility at a

temperature of 1450 K. Regions of high mobility

string-like motion are concentrated in filamentary

grain boundary like domains that separate regions

having relatively strong short-range order.



E. Abe, S.J. Pennycook, A.P. Tsai, Direct observation of a local thermal 

vibration anomaly in a quasicrystal, Nature (London) 421 (2003) 347-350

STEM images of LAVs of the decagonal Al72Ni20Co8 at (a) 300 K and (b)

1100 K, according to Abe et al. Connecting the center of the 2 nm

decagonal clusters (red) reveals significant temperature-dependent contrast

changes, a pentagonal quasiperiodic lattice (yellow) with an edge length of

2 nm can be seen in (b).



E. Abe, S.J. Pennycook, A.P. Tsai, Nature (London) 421 (2003) 347-350

(a) LAV amplitude dependence on temperature in Al72Ni20Co8, fitted by two points at

300 K and 1100 K, according to Abe et al. The maximum LAV amplitude at 1100K =

0.018 nm.

(b) LAVs give rise to phasons at T > 990 K, where a phase transition occurs, and

additional quasi-stable sites β arise near the sites α. The phason amplitude of 0.095 nm

is an order of magnitude larger than that of LAVs.

a



Chemical and Nuclear catalysis 

DFT modeling of nanoclusters of Pd-H(D)

Terentyev, Dubinko (2015) 

(a) Structure of Pd-H cluster containing 147 Pd and 138 H atoms 

having minimum free energy configuration, replicated using the 

method and parameters by Calvo et al; (b) H-H-H chains in the 

nanocluster, which are viable sites for LAV excitation

a
b
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Magic clusters are clusters of certain

("magic") sizes, which, due to their specific

structure, have increased stability

compared to clusters of other sizes.

In icosahedral clusters, each “k” layer

consists of 10k2+2 atoms.

So the total number of atoms in a cluster

with “N” layers is given by

for N=1,2,3,4, 5



Magic icosahedral cluster of 55 Pd atoms

Consider a cluster of 55 Pd atoms with quasicrystalline 5th order symmetry 

axis.



Initial conditions: 

at the initial time 

moment all 

particles have zero 

displacements 

from equilibrium 

positions. 

Atom #1 has initial 

kinetic energy 

1.5eV in [00-1] 

direction.

Atom #12 has 

initial kinetic 

energy 1.5eV in 

[001] direction

Boundary

conditions: free 

surfaces of cluster

T=0K

Icosahedral cluster of 55 Pd atoms



It is seen from the visualization, that Localized Anharmonic Vibration is 

generated. The observed LAV in the atomic cluster represents the coherent 

collective oscillations of Pd atoms along quasi-crystalline symmetry directions. 

Dynamics of the icosahedral cluster of 55 Pd atoms 



If the initial energy, given to cluster is large enough (greater then the cohesive 

energy) then the cluster is destroyed after a certain period of time (~ ps) .

Dynamics of the Pd atomic cluster



Conclusions and outlook

New mechanism of chemical and nuclear catalysis in solids is proposed,

based on time-periodic driving of the potential landscape induced by

emerging nonlinear phenomena, such as LAVs or phasons.

The present mechanism explains the salient LENR requirements: (i, ii)

long initiation time and high loading of D within the Pd lattice as

preconditioning needed to prepare small PdD crystals, in which DBs can

be excited more easily, and (iii, iv) the triggering by D flux or electric

current, which facilitates the DB creation by the input energy transformed

into the lattice vibrations.

The model (under selected set of material parameters) describes

quantitatively the observed exponential dependence on temperature and

linear dependence on the electric (or ion) current.

Atomistic modeling of LAVs and phasons in metal

hydrides/deuterides is an important outstanding problem since it

may offer ways of engineering the nuclear active environment .



Publications
1. V.I. Dubinko, P.A. Selyshchev and F.R. Archilla, Reaction-rate theory with account 

of the crystal anharmonicity, Phys. Rev. E 83 (2011),041124-1-13

2. V.I. Dubinko, F. Piazza, On the role of disorder in catalysis driven by discrete 

breathers, Letters on Materials 4 (2014) 273-278.

3. V.I. Dubinko, Low-energy Nuclear Reactions Driven by Discrete Breathers, J. 

Condensed Matter Nucl. Sci., 14, (2014) 87-107.

4. V.I. Dubinko, Quantum tunneling in gap discrete breathers, Letters on Materials, 5 

(2015) 97-104.

5. V.I. Dubinko, Quantum Tunneling in Breather ‘Nano-colliders’, J. Condensed 

Matter Nucl. Sci., 19, (2016) 1-12.

6. V. I. Dubinko, D. V. Laptev, Chemical and nuclear catalysis driven by localized 

anharmonic vibrations, Letters on Materials 6 (2016) 16–21.

7. V. I. Dubinko, Radiation-induced catalysis of low energy nuclear reactions in solids, 

J. Micromechanics and Molecular Physics, 1 (2016) 165006 -1-12.

8. V.I. Dubinko, O.M. Bovda, O.E. Dmitrenko, V.M. Borysenko, I.V. Kolodiy, 

Peculiarities of hydrogen absorption by melt spun amorphous alloys Nd90Fe10, 

Vestink KhNU (2016).

9. V. Dubinko, D. Laptev, K. Irwin, Catalytic mechanism of LENR in quasicrystals 

based on localized anharmonic vibrations and phasons, ICCF20, 

https://arxiv.org/abs/1609.06625.

https://arxiv.org/abs/1609.06625


Acknowledgments: 

• The authors would like to thank Dmitry 

Terentyev for his assistance in MD 

simulations

• Financial support from Quantum Gravity 

Research is gratefully acknowledged.



LAV !

THANK YOU 

FOR YOUR ATTENTION!




