Summary of the latest results of gas loading experiments

A. Kitamura¹, Y. Miyoshi¹, H. Sakoh¹, A. Taniike¹, A. Takahashi², R. Seto², Y. Fujita², T. Murota³ and T. Tahara³ ¹Graduate School of Maritime Sciences, Kobe University, ²Technova Inc., ³Santoku Corporation BG:

Anomalous heat evolution accompanied by ⁴He generation, which is difficult to explain by chemical reactions, was reported using Pd/ZrO₂ nano-composite samples exposed to gas-phase hydrogen isotopes [Y. Arata, et al.; The special report on research project for creation of new energy, J. High Temperature Society, No. 1, 2008].

Aim and method:

To find the underlying mechanism of the claim and to develop more efficient materials for the heat evolution, an experimental facility consisting of a twin hydrogen-isotope absorption / adsorption system and a nuclear diagnostic system has been constructed in 2008 [1].

[1] A. Kitamura, et al.; Physics Letters A, 373 (2009) pp.3109-3112.

$A_1 \cdot A_2$ twin system for simultaneous D_2/H_2 absorption experiments.

Schematic of one of the twin absorption system.

Samples tested

	Pd / (Cu)	Ni	Zr	Si	0	Supplier	
100nmø-Pd PP	99.5%, 100nmø					Nilaco Corp.	[1],[2]
Pd-black PB	99.9%, 300mesh					Nilaco Corp.	[1],[2]
mixed oxide PZ	0.312 (8nm <i>ø</i>)		0.688		(1.69)	Santoku Corp.	[1],[2],[3]
mixed oxide PS	0.054 (2-10nm <i>ø</i>)			0.946	(1.95)	Admatechs Corp.	[5]
mixed oxide NZ		0.467	0.533		(1.53)	Santoku Corp.	[2]
mixed oxide PNZ / PNZII	0.080 / 0.023	0.352 / 0.891	0.568 / 0.292		(1.57) / (1.50)	Santoku Corp.	[2]
mixed oxide PNZ2B	0.04	0.29	0.67		(1.67)	Dr. B. Ahern	[4]
mixed oxide CNZI	(Cu) 0.08	0.35	0.57			Santoku Corp.	[6]

[1] Phys. Lett. A, 373 (2009) 3109-3112.

[3] J. Condensed Matter Nucl. Sci., 5 (2011) 42-51.

[5] Sakoh H.; to be published in Proc. JCF12.

[2] J. Condensed Matter Nucl. Sci., 4 (2011) 56-68.

[4] Miyoshi Y.; ICCF16, paper MT-02.

[6] Miyoshi Y.; to be published in Proc. JCF12.

TEM images of the PZ sample

TEM images of Palladium nanoparticles from Japan (sample # 2)

Image at 25000X magnification

Sample prepared by Snatoku Corp. TEM analysis by Prof. R. Duncan, Univ. Missouri, Colombia

TEM analysis by Prof. Oku, Univ. Shiga Prefecture

TEM images of the PSII sample

Courtesy of Admatechs Co. Ltd.

Experimental procedure

Summary of the runs at R.T.

PZ: 8-nm \u03e9 Pd(31.2\u03e9) \v2r(68.8\u03e9)

(1) The 1st phase is found to be divided into two sub-phases;

- •1a phase; with rapid absorption/adsorption and high heat output.
 - Probably occurring in the near-surface region
 - Oxygen incorporation is necessary for this phase to appear.
 - $\eta_{\rm D}$ value is larger than $\eta_{\rm H}$, several times in some cases.
- •1b phase; with a lower heat output nearly equal to the bulk value.

(2) The 1a phase is observed only in #1 and #3 runs.

- (3) The **as-received** sample has very large 1st-phase parameters; (specific output energy $E_{1D(H)}$, the loading ratio D(H)/Pd, and the hydridation energy $Q_{D(H)}$).
 - Forced **reduction** of the sample has given the significantly smaller 1st-phase parameters
 - Forced **oxidization** of the sample has substantially recovered the large values of the 1st-phase parameters

Summary of the runs at R.T. (continued)

PP: 99.5%-pure 100-nm ϕ Pd and **PB:** 99.9%-pure 300-mesh Pd-black

(1) The effects similar to those for PZ are observed less prominently;

- the existence of the 1a and 1b phases, and
- increased absorption parameters by oxygen incorporation.

PS: Nano-porous-silica-included Pd nanoparticles

- (1) can avoid clumping-together to enable multiple use with more excellent characteristics of Pd nanoparticles.
- (2) The as-received samples showed very large loading ratio D(H)/Pd reaching 3.5 and absorption energy E_1 exceeding 2.5 eV/atom-Pd. These are much larger than other Pd nano-particle samples ever used.
- (3) The similar effects of the sample treatment in the recycled use are observed: Forced oxidization recovers large values of D(H)/Pd exceeding 2.2 and E_1 exceeding 1.3 eV/atom-Pd.
- (4) It is inferred that contribution of the oxygen pickup reaction to D(H)/Pd and E_1 is small. This means that both D(H)/Pd and $Q_{D(H)}$ are rather large compared with bulky Pd samples.

PS samples (nano-porous-silica-included Pd) show even ¹² larger capacity for sorption and improved repeatability.

PS samples (nano-porous-silica-included Pd) show even ¹³ larger capacity for sorption and improved repeatability.

PS samples (nano-porous-silica-included Pd) show improved repeatability.

14

PS samples (nano-porous-silica-included Pd) show improved repeatability.

Summary of the runs at R.T. (continued)

PNZ2B: 2-nm*\phi* [Pd(4%)Ni(29%)]Zr67%

- (1) Differently from the Pd-based samples (PP, PB, PNZ and PS),
 both forced oxidization and deoxidization substantially recover the large values of the 1st-phase parameters.
- (2) Condensation of D(H)₂O is prominent in the initial stage. Water formation does, however, not contribute so much to the hydrogen isotope consumption nor the output energy.
- (3) The loading ratio of D(H)/Pd·Ni exceeds 3, which indicates that hydrogen isotopes are absorbed by not only Pd but also Ni.
 Since Ni does not absorb hydrogen isotopes at room temperature, Pd is acting as a catalyst.
- (4) The 1a/1b sub-phase transition is not apparent.
- (5) The ratio of η_D/η_H is a little larger than 1.0.

Nuclear diagnostics - Summary

- Gamma rays; NaI Scintillation Detector
- Neutrons; ³He Doseratemeter
- High energy charged particles; Silicon Surface Barrier Detector, Ion Implanted Silicon Detector
- X-rays; Si-PIN Detector

No reliable indication of nuclear reaction products up to now.

Experimental procedure

CNZI samples (Cu : 8%, Ni : 35%, Zr : 57%) absorb little amount of D(H) with very little heat output at R.T.

19

Arrangement for absorption runs using CNZI samples

20

Calibration

- Relation between the temperature of the reaction chamber and the heater input power.
- The differential $\Delta T/\Delta W$ is the slope of the line connecting the neighboring points, and is used to evaluated the output power.

Blank runs for CNZI samples (Cu : 8%, Ni : 35%, Zr : 57%) introducing He gas is necessary to correct for

- apparent temperature drop due to the introduction of the cool gas, and
- apparent negative absorption due to pressure increase by heating.

H(D)-CNZI3(4)#5_573K

T-phase parameters of H(D)-CNZI3(4)#5_***K Runs

	A1	A1	A1	A1	A1	A1	
	KJ	KJ/g-Ni	KJ/g-Ni/h	W/g-Ni	eV/atom-M	H/M	time(min)
473K	0.58	0.29	0.14	0.04	0.19	0.04	125
523K	0.53	0.27	0.12	0.03	0.18	0.11	130
573K	0.21	0.10	0.05	0.01	0.07	0.58	116
573K_2	0.28	0.14	0.07	0.02	0.09	0.12	123
	A2	A2	A2	A2	A2	A2	
	KJ	KJ/g-Ni	KJ/g-Ni/h	W/g-Ni	eV/atom-M	\mathbf{D}/\mathbf{M}	time(min)
473K	1.06	0.53	0.19	0.05	0.35	0.02	165
523K	-1.46	-0.73	-0.25	-0.07	-0.48	0.09	175
573K	3.78	1.89	0.84	0.23	1.25	0.55	135
573K_2	2.636	1.32	0.41	0.11	0.87	0.1	193

T-phase parameters of H(D)-CNZI3(4)#5_*K Runs**

25

D(H)-CNZI1(2)#5_*K Runs**

D(H)-CNZI1(2)#5_473K; $W_{in} = 42W$

S-phase parameters in the D(H)-CNZI1(2)#5_***K Runs²⁷

S-phase parameters of H(D)-CNZI3(4)#5_***K Runs

	A1 A1		A1 A1		A1	A1	
	KJ	KJ/g-Ni	KJ/g-Ni/h	W/g-Ni	eV/atom-M	H/M	time(min)
473K	46.98	23.50	0.20	0.06	15.50	0.03	7105
523K	283.27	141.68	1.20	0.33	93.47	0.10	7070
573K	-717.47	-358.84	-1.96	-0.54	-236.74	1.11	11004
573K_2	231.37	115.72	2.59	0.72	76.34	0.14	2677
573K_2 (29000~ 40105)	1280.44	640.41	3.46	0.96	422.50	0.50	11104
	A2	A2	A2	A2	A2	A2	
	KJ	KJ/g-Ni	KJ/g-Ni/h	W/g-Ni	eV/atom-M	D/M	time(min)
473K	22.34	11.17	0.09	0.03	7.37	0.04	7065
523K	184.22	92.14	0.79	0.22	60.79	0.06	7025
573K	-1.41	-0.71	0.00	0.00	-0.47	1.40	10985
573K_2	62.39	31.20	0.72	0.20	20.59	0.07	2607
573K_2 (29000~ 40105)	1136.54	568.43	3.07	0.85	375.02	0.43	11104

S-phase parameters of H(D)-CNZI3(4)#5_***K Runs

CNZI: [Cu(8%)Ni(35%)]Zr(57%)

- (1) Absorption of both D and H is possible at *T* > 370 K, and the loading ratio D/Ni (H/Ni) > 1 at *T* > 470 K.
- (2) The endothermic tendency in the S-phase is observed both in D and H runs below 470 K.
- (3) Above 500 K, while some runs remain endothermic, most runs show the exothermic tendency with a specific output energy reaching 400 eV/atom-Ni at an averaged power of 1 W/g-Ni.
- (4) However, no conclusive evidence for the excess heat has been obtained at present.
- (5) If this turns out to be a true exothermic phenomenon, it is suggested strongly that a nuclear process participates in the phenomenon.
- (6) Calorimetry with increased amount of the powder at higher temperatures is in preparation.