Search for excess heat in metal cathodes exposed to pulsed hydrogen plasma

Rick Cantwell¹, Matt McConnell¹, Tom Claytor² ¹Coolescence, LLC, Boulder CO USA, rick@coolescence.com ²Guest Scientist, Los Alamos National Laboratory

Background

- Claytor¹
 - Report tritium
 - 1500-2500 V, 150-250 torr, > 5 A/cm²
- Karabut²
 - Report excess heat, nuclear products
 100-500 V, 3-10 torr, > 10-100 mA/cm²
- Claytor, et. al. "Tritium Production from Palladium Alloys", ICCF-7, 1998, p. 88
- 2. Karabut, et. Al. "*Nuclear product ratio for glow discharge in deuterium*", Phys. Lett. A. 1992, p. 265

Recently, simple thermometry experiments suggest possible excess heat using mixed H +D with Ni cathode³

- Plasma produces a greater temperature rise than same power delivered into a calibration resistor
- Excess power depends on H:D ratio in gas
- Excess power depends on cathode material
- 3. Claytor, Private conversation, September 2011

Research Objective

- Do we see excess heat in H/D plasma?
- Does excess heat depend on H:D ratio?
- Does excess heat depend on cathode material?

Experiment #1: Goal

Look for excess heat using thermometry

- Run cell in isothermal enclosure
- Look how T and P change when power is applied to cell
- Compare plasma changes to resistor changes under similar conditions

Block diagram: Operation

Block diagram: Calibration

Plasma cell

- Cathode: 2 x 40 mm
- Anode: 18 mm dia. Ni mu-metal alloy
- Cathode-Anode spacing: 1-3 mm
- 45 cm³ volume
- CF 2.75 flanges
- Thermal time constants
 - 4 min center
 - 40 min flanges

Plasma characteristics

- 150-250 torr
- 900-1300 volts, 5-10 amps
- 5-20 μs pulse @ 50-100 Hz
- Constant power operation
- Sample V &I @ 14-bit, 100 Msample/sec

Cathode Materials

- Ni alloy (Nickel mumetal: 80%Ni, 16% Fe, 4% Mo)
- Ni
- Pd
- Zr

POOLESCEN

Typical run in isothermal chamber

COOLESCEN

Thermometry & pressure results

Normalized delta absolute temperature

 $(T_{5W} - T_{0W})/T_{0W}$

Normalized delta pressure $(P_{5W}-P_{0W})/P_{0W}$

Conclusions from thermometry runs

- Excess Heat:
 - Possible 2-5%
- H:D ratio effect:
 - Not observed
- Cathode material effect:
 - Ni alloy may show excess heat

More Conclusions

- Neither ΔP nor ΔT are adequate proxies for heat output
 - Temperature & pressure sensitivity to plasma condition
 - ΔP greater for plasma
- Need a calorimeter!

Experiment #2: Goals

- Design calorimeter to look for excess heat
 - Sensitivity < 50 mW
 - Long term drift < 50 mW
 - Repeatability < 50 mW
 - 50 mW → 0.9% at 5.5W input

Calorimeter: Operation

Calorimeter: Calibration

Calorimeter construction

- Air cooled Seebeck^{4,5}
 - 5 insulated sides
 - TEMs under heat sink
 - Small fan inside calorimeter
- Operated inside isothermal box
- Built from EPF sheets (2 inch pink foam)
- 4. Knies, et. al. "*Differential Thermal Analysis Calorimeter at the Naval Research Laboratory*", ICCF-15, 2009, p.11
- 5. Letts & Hagelstein, "*Modified Szpak Protocol for Excess Heat*", ACS 2010

Calorimeter performance

Typical run in calorimeter

Calorimeter results

Helium as a control?

- Suggests less excess power with helium
- However, not consistent

Cathode environment

- Surface erosion at tip
- Little damage at far end

Cathode tip after ~40 hours plasma

Back-end of cathode

Conclusions

Excess heat?

- Nothing greater than 2-3%
- Possible small effect on some cathodes
- Isotope effect?
 - Not seen
- Cathode material effect?
 - Maybe Ni alloy

Future work

- Have we run the same experiment?
 - Analyze gas from cell for tritium
- Do we have any measurement artifacts?
 - Look for better control
 - Additional tests of power measurements
- Look for ways to increase effect
 - Anode-cathode separation distance
 - Other materials