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ABSTRACT

Condensed matter nuclear effect, especially 4D-cluster fusion, in metal-deuterium complex
systems, has been studied by applying Langevin equations.

One dimensional Langevin equations for solving time-dependent d-d distance Rdd(t) for
deuteron-clusters under the Platonic symmetry were formulated for D-atom, D2 molecule,
D2

+ ion, D3
+ ion, 4D/TSC and 6D2-/OSC. Established values of ground state d-d distances

Rgs were reproduced by expectation-value equations, which were obtained by ensemble
averaging with weight of quantum mechanical wave functions (Gaussian wave functions),
for D-atom, D2, D2

+, and D3
+ molecule.

In analogy to the above Langevin equations, the Langevin equation for 4D/TSC under the
tetrahedral double Platonic symmetry was derived and numerically solved by the Verlet
time-step method. It was shown that only 4D/TSC among 5 D-systems except D-atom
could condense ultimately from Rdd(t=0)=74 pm to very small charge neutral entity with
about 20 fm radius at TSC-min state after about 1.4 fs condensation time. The 6D2-/OSC
system converged at Rgs=about 40 pm, namely converged on the way of condensation from
Rdd(t=0)=74 pm.

Time-dependent Coulomb barrier penetration probabilities (barrier factors) for condensing
4D/TSC were calculated by the Heavy Mass Electronic Quasi-Particle Expansion Method
(HMEQPET). 4D fusion rate per TSC generation was obtained based on the Fermi’s first
golden rule to result in almost 100% 4D fusion reaction per 4D/TSC generation. Fusion
rates were compared with those of muonic dd molecule, D2 molecule and dde*(2,2) Cooper
pair molecule to meet good consistency. Major nuclear products of 4D fusion are two 23.8
MeV α-particles. 4H/TSC should condense in the same way until when TSC-min state with
classical electron radius (2.8 fm) comes, but no strong interaction exists among protons and
will make 1p to 4p capture transmutations with host metal nuclei when 4H/TSC has
sufficient drift (CMS) momentum.

Keywords: D-cluster fusion, dynamics, condensation, 4D/TSC, D-molecules, Langevin
equation, barrier factors, 4D fusion, helium-4

1. Introduction

To explain apparent hard-radiation-less excess heat with helium-4 ash in CMNS (condensed
matter nuclear science) experiments, especially in dynamic PdDx systems, we have done a long
series of study for modeling D-cluster (or multi-body deuteron) fusion reaction mechanisms to
reach at our latest theory based on Langevin equations1,2).
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This paper describes the basics of formulation of Langevin equations for D-cluster
dynamics, especially for D-atom, D2 molecule, D2

+ ion, D3
+ ion, 4D/TSC (tetrahedral symmetric

condensate) and 6D2-/OSC (octahedral symmetric condensate).

First one-dimensional Langevin equations for D-clusters with the Rdd d-d distance are
formulated under the Platonic symmtery1,3) of multi-particle D-cluster systems with deuterons
and quantum-mechanical electron centers. Under the orthogonally coupled Platonic symmetry
for a Platonic deuteron-system and a Platonic electron system, dynamic equations for so-many-
body system of deuterons and electrons with metal atoms (more than 4 deuterons plus 4 1s
electrons of deuterium atoms plus 40 4d-shell electrons of 4 Pd atoms in fcc lattice plus
surrounding lattice atoms under D-phonon excited states should be considered in our
modeling7)), a simple one-dimensional Langevin equation for the inter-nuclear d-d distance Rdd

can be formulated, as we will show in this paper. By the ensemble averaging of one-
dimensional Langevin equation with the weight of quantum mechanical wave-functions for
electrons and deuterons, we can further derive a time dependent equation for expectation value
<Rdd>, which is nonlinear, but can be solved by the Verlet time step method2). We show in this
paper that only 4D(orH)/TSC can condense ultimately to be finally very small charge neutral
entity with about 10-20 fm radius. At the final stage of 4D/TSC condensation in about 2x10-20 s,
4D fusion with 2 4He products takes place with almost 100% probability, according to our
HMEQPET calculation for barrier factors and fusion rate formula by the Fermi’s first golden
rule2).

In the next section, we show the derivation of Langevin equations for known systems as D-
atom, D2 molecule, D2

+ ion, and D3
+ ion. This procedure gives the basics for formulating

Langevin equations of complex D-cluster systems as 4D/TSC and 6D/OSC. In analogy, we apply
the methodology and derive Langevin equations for 4D/TSC and 6D/OSC condensation motions
in the following section.

2. Langevin Equations for Known D-Systems

2.1. Langevin equation in general
The Langevin equation is useful to treat dynamic motion of particles under friction (or

constraint) and random fluctuation of force-field.
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Here m is the particle mass, R is particle position, Fc is the Coulombic force, ςis the coefficient
for friction (or constraint) and f’(t) is the randomly fluctuated force term (white noise), for our
deuterons plus electrons system.

2.2. Langevin equation for D-atom
In Fig. 1, simple quantum mechanical image of D-atom is drawn. In the view of Platonic

symmetry, D-atom is the orthogonal coupling of central point (deuteron) and sphere (electron-
wave). The Langevin equation is given as balance of the centripetal force of Coulombic
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attraction between plus-charged deuteron and minus-charged electron and the centrifugal force
of electron rotation around central point (deuteron);
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Here, me is the electron mass, Rde is the d-e distance, e is the unit charge and ve is

W eight of electron for D -atom
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Figure. 1. Quantum mechanical image of D-atom

the electron velocity. We have no friction in this case. By taking ensemble average of Eq. (2)
with the weight of squared 1-s wave function 100 2, we obtain,
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The right side becomes zero, because of the average kinetic energy
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 as well known for hydrogen (or deuterium) atom.

We can integrate Eq. (3) over time to get,
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The time-average (integral) of random fluctuation f(t) is equal to the ensemble average <f(t)>
due to the ergodic process. We integrate Eq. (4) to obtain the well known result as,

pmRRtR Bde 9.52)( 0  (5)

Namely, expectation value <Rde> of radial electron orbit is constant to be Bohr radius RB = 52.9
pm.

2.3. Quantum Mechanical Ensemble Average for D-Cluster
Since both positions of electrons and deuterons fluctuate quantum mechanically for D-

cluster systems, we need to average with both weights of wave functions for electrons and
deuterons. Applying the Born-Oppenheimer (adiabatic) approximation for total wave function,
we can make step-wise averaging for electron-waves and then for deuteron-waves. The adiabatic
wave function for D2 molecule is;

)(),,,;( 22121 ddDBBAAdd RXrrrrR  (6)

The electron wave function of D2 molecule is given4) by,
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And the wave function for a d-d pair is approximated by the Gaussian wave function as,
rewriting X withΨ and putting Rdd = R,
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Quantum-mechanical ensemble average of observable G is given by,

 GG
ensemble

(9)

2.4. Langevin equation for D2 molecule
Electron localization (weight distribution) of D2 molecule is roughly understood by the

normalization equation of wave function,
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Since 2r is the element of particle density localization function, localized peaks appear at
rA1=rA2=rB1=rB2=a=RB (52.9 pm); namely the drawn sphere with Bohr radius is a good measure
of electron localization.
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Figure 2. Localization of electron wave and semi-classical image of D2 molecule

In the view of Platonic symmetry, D2 molecule is an orthogonal coupling of d-d line (dipole)
and circle (torus of electron center) to form a dicone. Freedom of electron motion is constrained
by the existence of counterpart deuteron and electron to form the torus of electron center, but
averaged centrifugal force exists as the rotation of electrons around Rdd axis. See Fig. 2.

The Langevin equation for D2 molecule becomes as,
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Here the Coulomb force term under Platonic symmetry is derived by derivative (minus sign) of
Coulomb energy,
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By taking QM-ensemble average with weight of squared electron wave function,
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The first and second term of Eq. (16) right side cancels each other4), and we obtain,

)()1,1;(2
2

2

tf
R
RV

dt
Rd

m
dd

ddsdd
d 


 (17)

By taking ensemble average with the Gaussian wave function of d-d pair, the second term of
Eq. (17) <f(t)> becomes zero, since we have no distortion in d-d dipole line by QM fluctuation to
deviate from the Platonic symmetry. Thus, Eq. (17) becomes well known Newtonian mechanical
equation, with constraint by molecular trapping potential Vs2 (Rdd;1,1). Mathematical formulas
for trapping (shielded) potentials of D2 and D2

+ systems are given in our previous papers2, 5).
Figure of plotted data for two potentials are shown in Fig. 3.

Trapping Potentials for D2 and D2+
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Figure 3. Trapping potential of d-d pair for D2 molecule and D2
+ ion

As understood by potential shape for D2 molecule given in Fig. 3, the Langevin equation for
expectation value <Rdd> gives always convergence to Rgs =74 pm after time-dependent motion
starting from arbitrary position Rdd (t=0). If Rdd > Rgs, we have acceleration force. If Rdd < Rgs,
we have deceleration force.
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2.5. Langevin Equation of D2
+ Ion

In analogy to the D2 molecule, Langevin equation for D2
+ ion (stable in vacuum) is given by,
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By taking QM-ensemble average,
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Potential curve is shown in Fig. 3. In the view of Platonic symmetry, D2
+ ion molecule is an

elongated dicone with Rdd=130 pm, with rotating triangle of “d-e-d” type face around the Rdd

axis. Dynamic motion of deuteron by Eq. (20) gives convergence to Rdd=Rgs=130 pm.

In the following for complex D-cluster systems, Eq. (17) and Eq. (20) with those potentials
will provide intrinsic components of friction (constraint) by QM electron waves with D-cluster
condensation.

2.6. Langevin Equations of Expectation Values for Complex D-Clusters
In complex D-cluster systems under Platonic symmetry, averaged rotation motion over whole

system is prohibited by constraints of many particle arrangements. This form3) of self-
organization makes simpler treatment to derive one-dimensional Langevin equation possible.
The term form is meta-physical concept.

The QM-ensemble average on electron wave function can be subdivided as multiple constraint
function of “d-e-d” type or “d-e-d-e” type potential derivative as,

dd

ddsi
fwaveelectron R

RVNConstra
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

)1,1;(int (21)

Here Nf is the number of faces of Platonic polyhedron for a D-cluster, and i=1 for the “d-e-d”
type (D2

+ type) face and i=2 for the “d-e-d-e” type (D2 type) face.

The Langevin equation for a D-cluster under Platonic symmetry with Ne number of d-d edges
and Nf number of faces is written for Ne >2,
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Here k is constant (11.8 for 4D/TSC).



8

The QM-ensemble average on d-d wave function (assuming Gaussian form) is given by
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with a Gaussian wave function for d-d pair of D-cluster,
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We drive a Langevin equation for expectation value <Rdd> = <R> as,
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For complex D-cluster, <f(t)> value does not always zero because of deviation of D-cluster
system from ideal Platonic symmetry, due to the quantum mechanical fluctuation of d-positions
which may distort the Platonic symmetry. The perturbed force component by this QM distortion
is approximately given by the next formula, which is the change of system Coulomb energy
derivative, as,
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By using a Gaussian squared wave function for d-d pair fluctuation, we write,

22 )()( RR  (27)

The change of Coulomb force by distortion is given by

<Change of Coulombic Force> =
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ddR
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9

2.7. Langevin Equation of D3
+ Ion Molecule

It is well known that tri-atomic hydrogen molecular ion D3
+ (or H3

+) is generated in ion source
and glow discharged plasma and very stable in vacuum. However, quantum molecular physics
for the system is of difficult problem to solve and studies are being continued in astrophysics
needs.

The analogy of the present methodology for D (or H)-cluster under orthogonal coupling of
Platonic symmetries for electrons and deuterons (or protons) can provide rather simple way of
modeling its dynamics. Applying Eq. (25), we obtain,
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Here the force is given with unit of [keV/pm]. Image of D3
+ ion is given in Fig. 4.

3D+ Ion ; Semi-classical view of particle arrangement

deuteron

Electron center <e>:

Bohr radius sphere

a) Top View

b) Bird view

Trigonal Dipyramid
: Triangle-Dipole Coupling

Figure 4. Tri-atomic hydrogen (deuterium) molecular ion and Platonic arrangement

The system Coulomb energy and its derivative can be calculated by simple geometry exercise
for the Platonic symmetry system of trigonal di-pyramid which is the orthogonal coupling of the
3d regular triangle and the <e> - <e> line (dipole). Here two electron centers (or electron balls)
appear in the system, and system-averaged rotation of electrons is prohibited (no averaged
centrifugal force).

By distortion of ideal Platonic symmetry with QM fluctuations of deuteron positions, we have
positive <f(t)> bias. As we have 3 d-d edges in the system, 3 times of Eq. (28) becomes the bias
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(about 30% of main Coulomb acceleration force). Therefore the total potential of the system
becomes in expected value equation, as,

)1,1;(613.6)(3 dds
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R

RV  + (<f(t)> component) (30)

The calculated curve of this potential is shown in Fig. 5.
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Figure 5. Trapping potential of D3
+ ion molecule with Langevin equation for expectation value of d-d distance of

3d regular triangle

The tri-atomic hydrogen ion is thus stable and has its ground state at Rgs= 80 pm. As a
reference, Helm et al (Freiburg University, 2003; google triatomic hydrogen ion and Helm) gave
about Rgs = 85 pm8) which agrees considerably well with our result taking into account that
appropriate sigma-value of wave function2) is about 30 % of Rdd.

We can conclude that our approach with one-dimensional Langevin equations for D-cluster
systems look successful.

3. Langevin Equation for 4D/TSC and Numerical Solution

3.1. Double Platonic Symmetry
In Fig. 6, we show feature of electron cloud for 4D/TSC (t=0), compared with those of D-atom
and D2 molecule.
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Feature of QM Electron Cloud

b) D2 molecule (stable): Ψ2D =(2+2Δ)-1/2[Ψ100(rA1) Ψ100(rB2)+ Ψ100(rA2) Ψ100(rB1)]Χs(S1,S2)

Bohr orbit of D (H)

Electron center; <e>=(e↑ + e↓)/2

Deuteron

a) D atom (stable)

c) 4D/TSC (life time about 60 fs)

RB = 53 pm

Bosonized electron
Center torus for
(e↑+ e↓)
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Electron coupling
For (e↑ + e↓)

│rΨ100│2

A B

Figure 6. Feature of QM electron clouds for 4D/TSC (t=0), compared with those of D-atom and D2 molecule

The form3) of 4D/TSC (t=0) wave function is given1,3,4) as,

Wave Function for 4D/TSC (t=0)
• Ψ4D ~a1 [Ψ100(rA1) Ψ100(rB2) + Ψ100(rA2) Ψ100(rB1)]Xs(S1,S2)

+a2 [Ψ100(rA1) Ψ100(rD4) + Ψ100(rA4) Ψ100(rD1)]Xs(S1,S4)
+a3 [Ψ100(rA2) Ψ100(rC4) + Ψ100(rA4) Ψ100(rC2)]Xs(S2,S4)
+a4 [Ψ100(rB1) Ψ100(rD3) + Ψ100(rB3) Ψ100(rD1)]Xs(S1,S3)
+a5 [Ψ100(rB2) Ψ100(rC3) + Ψ100(rB3) Ψ100(rC2)]Xs(S2,S3)
+a6 [Ψ100(rC3) Ψ100(rD4) + Ψ100(rC4) Ψ100(rD3)]Xs(S3,S4)

6-Bonds of “Bosonozed” electron-pairs (e↑+ e↓), which
forms Regular Tetrahedron (PA)

4-Electron-Centers at Vertexes of Regular Tetrahedron (PA)

u1s1 (r) = Ψ100(r) = (1/π)1/2(1/aB)3/2exp(-r/aB)

Top equation (31)

This TSC system has double symmetry of regular tetrahedrons for deuterons and electron-
centers, namely the double Platonic symmetry which is the most ideal system in 3-dimensional
condensation squeezing into the central focal point (Center-of-Mass; CMS).

3.2. Langevin Equation for 4D/TSC
The system Coulomb energy and its derivative are given in our previous work1,2). We write here
resulting final Langevin equation for Monte-Carlo calculation.
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For QM-ensemble averaged equation, we obtained 2),
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Time-dependent potential for this equation was given2) as,
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Here we fixed m=2 and Z=2 for Vs (dde*(2,2) potential) for numerical calculation.

The third term of right side of Eq. (36) gives about 15% positive bias to main Coulomb force
(first term), and was merged2) in the first term by multiplying factor 0.85 in the numerical
calculation by the Verlet method.

In Fig. 7, we show the calculated trapping potential of 4D/TSC, compared with that of
6D2-/OSC (shown later). 4D(or H)/TSC keeps in average the always accelerating force in its
condensation motion, hence it can condense ultimately until when TSC-min state (about 10-20
fm radius) comes, as illustrated in Fig. 8. On the contrary, 6D2-/OSC converges to Rdd=40 pm on
the way of condensation (we derive equation later). Within the presently studied 5 kinds of D-
clusters, only 4D/TSC can condense ultimately to very small charge neutral entity.
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M ain Trapping Potentialof4D/TSC and 6D/O SC
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Figure 7. Trapping potential of 4D(or H)/TSC, always attractive, compared with 6D2-/OSC potential which has
converging point (40 pm) at its ground state
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Figure 8. Condensation of 4D/TSC and 4D-fusion to two 4He-particles break-up

Numerical solution of Eq. (36) was obtained by a computer code based on the Verlet time-step
method2), a standard result is shown in Fig. 9.
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TSC Step2 Averaged <f(t)> (2,2)
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Figure 9. Numerical results of 4D/TSC condensation motion; time-variation of <Rdd> and mean deuteron kinetic
energy <Ed>

The condensation time of 4D/TSC is very fast as 1.4007 fs. As we show in the next section,
4D fusion reaction takes place with almost 100% probability in the final stage of condensation
within the time interval of about 2x10-20 s. For other details of time-dependent behavior of TSC
dynamics with different conditions, see our previous paper2).

3.3. Estimation of Fusion Rates
The Gaussian wave function was quite useful for making QM-ensemble averaging of Langevin

equation, but unfortunately the accuracy in its tails (for very small Rdd values) is not high enough
to apply for the estimation of barrier factor of d-d pair and 4d cluster, as we illustrate the relation
between trapping (shielded) Coulomb potential, wave function and the very short (within r0 =
about 5 fm) range of nuclear strong interaction, in Fig. 10.

To obtain usable accuracy in barrier factor, we introduced the Heavy Mass Electronic Quasi-
Particle Expansion Method (HMEQPET) to provide equivalent time-dependent potentials for the
squeezing 4D/TSC system. Detail description is given in our previous paper2).
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Adiabatic Potential for Molecule dde*
and its ground state squared wave function
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Figure 10. Relation between d-d trapping (shielded) Coulomb potential, wave function and the very short (within
about 5 fm) range of nuclear strong interaction. By calculating Gamow integral from Rgs to r0, we obtain barrier
factor for fusion rate estimation.

Time-dependent or equivalently Rdd-dependent barrier factors were calculated as we copy from
our previous paper2) as given in Table-1. TSC starts at Rdd=74 pm and condenses very rapidly to
reach at the final TSC-min state with Rdd = 0.0206 pm (20.6 fm) in this case. On the way of
condensation, TSC passes the equivalent state with that of dd-muon molecule for which we have
reference data6) to show good agreement with our calculation. Barrier factors for 2d and 4d
fusion were calculated using the WKB approximation with Gamow integral2).

Fusion rates for steady molecules were then calculated based on the Fermi’s first golden rule2),

WrPrPW ndndnd )(1004.3)(2
0

21
0 


 (38)

Here Pnd is barrier factor for nD-cluster and <W> is the averaged value of imaginary part of
nuclear optical potential7). The extrapolation of <W> value to 4d fusion was made2) by using the
scaling law 5)(PEFW  with PEF-value which is given in unit of derivative of one pion

exchange potential (OPEP) (simple case of Hamada-Johnston potential10) for pion exchange
model) given by

x

xV

r

xV
OnePEF OPEPOPEP









  ,, )(

43.1
1)(

(39)
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Here  fmrrcmx
43.1





and S12 is the tensor operator 212
21

12
))((3  


r

rrS

and  MeV
c

cmfv 65.3
3
1 22

0 


 .

And 


is the isospin operator for n-p charged pion exchange and 


is the spin operator for
nucleon state. The table of <W> values is given in our previous paper2).

Time-integrated fusion yield per TSC generation was given2) by the following formulas,

))(exp(1
0 44 dttct

dd   (41)

))(;(1088.1))(;(1004.3)( 04
23

04
21

4 tRrPtRrPWt ddddddd  (42)

dttRrPdtt dd
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d

t

d
cc ))(;(1088.1)( 00 40

23
4   (43)

22
00 4 1031.2)(:(  dttRrP dd

t

d
c

(44)

0.14 d (45)

Macroscopic fusion rate is given by

dtscd QY 44  (46)

We have obtained that 4D fusion may take place with almost 100 % yield per a TSC generation,
so that macroscopic 4d fusion yield is given by simply with TSC generation rate Qtsc in the
experimental conditions of CMNS. However, when we consider that one deuteron has spin-
parity 1+ and combination of 4d has total spin state 4, 3, 2, 1 and 0, the 4d fusion with out-going
channel to two 4He (0+:gs) particles is forbidden, by spin-parity conservation (for S-wave in/out
channels), except for the 0+ spin-parity state (T=0) of 4d combination, to be explained detail
analysis including P-wave and D-wave states with isospin elsewhere.
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Table-1: barrier factors under 4D/TSC condensation

1.98E-3
1.12E-4
2.05E-6
1.12E-9
2.16E-13
1.00E-18
9.40E-21
4.75E-29
8.79E-41
4.67E-64
1.69E-92
1.00E-170

4.44E-2
1.06E-2
1.43E-3
3.35E-5
9.40E-7
1.00E-9
9.69E-11
6.89E-15
9.38E-21
2.16E-32
1.30E-46
1.00E-85

0.0206 (TSC-min)
0.0412
0.103
0.206
0.412
0.805 (μdd)
1.03
2.06
4.12
10.3
21.8 (dde*(2,2)
74.1 (D2 molecule)

P4d; 4D Barrier FactorP2d ; 2D Barrier
Factor

Rdd=Rgs (pm)

Barrier Factors of 4D/TSC under condensation,
Calculated by HMEQPET Code

Table-2: Fusion rates by Fermi’s golden rule for steady molecules
Molecule Rdd=Rgs

(pm)
Pnd ; B-
Factor

<W>
(MeV)

λ2d (f/s) λ4d

(f/s)
D2

dde*(2,2)
μdd
4D/TSC-

min

74.1
21.8
0.805
0.021

1.0E-85
1.3E-46
1.0E-9
1.98E-3

0.008
0.008
0.008

62

2.4E-66
3.16E-27
2.4E+10

3.7E+20

The ultimate condensation is possible only when the double Platonic symmetry of 4D/TSC is
kept in its dynamic motion. The sufficient increase (super screening) of barrier factor is also only
possible as far as the Platonic symmetric 4D/TSC system is kept. Therefore, there should be
always 4 deuterons in barrier penetration and fusion process, so that 4d simultaneous fusion
should take place predominantly. The portion of 2D (usual) fusion rate is considered to be
negligible2).

Major nuclear products of 4D fusion are two 23.8 MeV α-particles5,7). 4H/TSC should
condense in the same way until when TSC-min state with classical electron radius (2.8 fm)
comes, but no strong interaction exists among protons and will make 1p to 4p capture
transmutations with host metal nuclei when 4H/TSC has sufficient drift (CMS) momentum.
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Rdd = 1 (=1.414RB)

Rd-cross= 1.414

Rd-CM =1/1.732
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Figure 11. Illustration of 6D2-/OSC system

4. Langevin Equation for 6D2-/OSC

To fulfill the orthogonally coupled Platonic symmetry for 6D-cluster, 8 electron centers should
appear on the center lines of 8 regular triangle faces of 6d octahedron; see Fig. 11. Therefore,
the Platonic OSC should be with 2- negative ion state.

The Langevin equation for 6D2-/OSC becomes as,

)(')(
)(

)1,1);((24
)]([

3.29)(12 22

2

tftf
tR
tRV

tRdt
tRdm

dd

dds

dd

dd
d 


 (47)

The effective trapping potential of this system was already given in Fig. 7, which tells us that
6D2-/OSC does not make ultimate condensation. However, in transient condensation process, we
may have small probability that d-d distance would approach in shorter d-d distances than 40 pm
of its ground state and 6D fusion rate may be somehow enhanced. We need numerical study for
this.

We need a different study on if there exists a condensing system of neutral 6D-cluster (face-
centered dodecahedron11) by coupling of two octahedrons (one of 6 deuterons and the other of 6
electron-centers).
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5. Conclusions

1) Platonic Symmetric Arrangement realizes Energy-Minimum State of Many-Body System.

2) Platonic symmetry appears in D-atom, D2, D2
+,D3

+ molecule, and 4D/TSC.

3) Platonic symmetry appears in CMNS of 4D/TSC for both of the Coulombic interaction and
the strong interaction.

4) Dynamic Platonic symmetry is of key for super-screening of Coulomb repulsion and 4D
Cluster Fusion.

5) We have obtained good solutions of molecular dynamics with Langevin Equations, for
Platonic symmetric systems as, D, D2, D3

+ and 4D(or H)/TSC.

6) It was shown that about 100% 4D-fusion per TSC generation is possible, by the present
work, in the condensed matter nuclear effects.

7) Only 4D (or H)/TSC can condense ultimately to a very small charge neutral entity with 10-20
fm radius size, as far as 5 kinds of D-clusters studied in this work.

8) Bosonized e(１/2)+e(-1/2) coupling for the “d-e-d-e” system makes D2 type faces of 4D(or
H)/TSC to help its ultimate condensation.

9) 6D2-/OSC converges its condensation at about Rdd=40 pm, but closer d-d distance in transient
may appear with small probability.

10) Single <e- >-center states for the “d-e-d” (D2
+) type faces of D3

+ ion molecule and 6D2-/OSC
enhance constraint (friction) for their condensation.
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