Calculation of the bound states of the
magnetic monopole and the small nuclear
system

Tetsuo Sawada (RIMM)



Small nucleli
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n 1.0014 - 0.811 fm.
p 1/2 1.0000 2.7928 0.811 fm.
d 1 1.9990 0.8574 4.316 fm.
t 1/2 2.9937 2.98 2.0
3He 1/2 2.9932 -2.13 2.0
‘He 0 3.9713 0 1.61

fm.

Magnetic moment of the nucleus is K tot(e/2mp). So in the magnetic
field B,

it has the potential V=- K tt (e/2mp) o - B . In particular when B is the
magnetic? () =k, (*ee! 2m,)(G - 7)1 r*

Coulomb field produced by the monopole *e, namely B=*e /r?, the
potential becomes . Therefore the
nuclei whose magnetic moment directing outside are attracted to the
monopole, and gather around *e. At the temperature T the Boltzmann
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Angular momentum of the system where the
electric charge and magnetic charge coexist (1)

The equation of motion of the charged particle Q in
The magnetic Coulomb field :

2 , -
mjt—zl_;z QFX(*Q%j

C r

If we make the vector product r ® of this equation,
we obtain:

i(ff’xm?):*QQ FX(FSXF)Z*QQ d (17)

dt C v c dt r

So what Is conserved _ B . A
in time is : L=rxmr —qr with ¢g=*QQI/c




Angular momentum of the system where the
electric charge and magnetic charge coexist (2)

Density of the momentum of the electromagnetic field stored
In space Is:

P=(ExH)Il4rc

If we substitute E and H by the Coulomb fields, the total angul:
momentum of the electromagnetic field becomes:

- *QQ 3.1 7 (’”_’”)
Lo = are 147 (I j
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The charge quantization condition (1) (Dirac)

*
QQ:h—n n=0+1+2--
C 2
From this condition, the world with the magnetic monopole
has the following characteristic features:

@ charge Q is discrete, and its pitch is (h c /2 *e) :
O =(hcl2*e)n ,where*eis the smallest magnetic charge.

lemma] the pitch (hc /2 *e)is common to all the charged
particles. In particular, the charges of the proton and the
electron must coincide precisely up to sign.

Because of this property, monopole is a favorite particle of the particle physicists ,
The monopole search is still continued. See home page of the particle data group:
http://pdg.lbl.gov .
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The charge quantization
@ ?R@égﬂgaﬁé)rce between monopoles is super-strong :

*e2/hc =137/4. This value is derived from the charge
guantization condition *ee/hc =1/2 and e?/hc =1/137.

[lemma] The strength of the interaction between the magneti
monopole and the nucleon is the same order of magnitude as
that of the nuclear potential.

(ex.) let us compare the strengths of the potential of *e
and p,
and the nuclear potential og one;pé'oplﬁxglq?nge. More

predisely, (r) = —k

p2mp r 2

2 —ur 2
e
1VC+,(17Z')(I/,) — _ f f _ 008

with
47 v 4 .




The charge quantization condition (3)

Since «p=2.79 > 0, for the proton the spin orienting

outward
, hamely the eigen state of (o *r)/r with +1 eigen-value,
IS
attractive. If we use *ee=1/2 , the two potentials become
2 _—ur
__Kp 1 1 1V+’(1ﬂ)(l”)=—f e
o 2 2m. r° ¢ A r
r 1 fm. 2 fm. 3 fm.
V*e_p -28. MeV. |-7.0 MeV. |-3.1 MeV.
1V+,(17r) -7.7 MeV. |-1.91MeV. |-0.63MeV.
C




Eigen-value problem of the monopole-nucleus system

When a nucleus has large magnetic moment, it is expected
to form the bound state with the magnetic monopole, if the
spin of the nucleus orients properly.

When the magnetic charge is D*e, the Hamiltonian of *e-N is
1 - Je - k D (7- G)
f(r)

H,=——(-iV-"24)2-

2m c 2 2m, r°
, where A is the vector potential, whose rotation is the
magnetic Coulomb field. And f (r) is the form factor of the

nucleon. More generally, by using the nuclear potential V, the
Hamiltonian of the monopole-nucleus system Is written as:

H, ZH +ZH +V,

>
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The vector potentials for the magnetic Coulomb field

If we remember the formula in the spherical coordinate system:

(Vxd), =—= 19 (snga,)- 2
rsiné o6 0
S 1 1 064, @

Vxd),== - A i
(V x 4), risiné? 00 or (7 ¢)} The vector potentials,

. which
(VxA), = 1 i(rA@) — aAr} are regular in the north
r | oOr 00 and
‘4 =0 A,=0
and 1+ cod)
Aq(f) =—D*e—
rsind

These two vector potentials are (N) _ 4(8) _ * =
con- nected by the gauge A¢ A¢ =2D%e (V ¢) ¢

transformation :



Monopole harmonics

When we search for the wave function in the form of a product ¢ =R(r) Y( 0
the monopole harmonics’_, , (0,¢) appears in place of the well-known
spherical harmonicg,, (0,¢) . Instead of the Legendre bi-function, the

Wigner function d( 0 ) of the rotation matrix appears :

2€+1 +1 +im
Y0 (0.9) = \/M “dl), (0)e ™"

This function has a new index g, which is the magnitude of the extra angular

Momentum, in additionto ¢ and m.  The ranges of ¢ and m are
0=|ql, [g]*+1, ... and m=-0,-0+1,..., 0 respectively.

The monopole harmonics in the north and south hemisphere differs by the
phase factor exp[-i2q ¢ | as expected in the gauge theory.
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Monopole-nucleus of spin-0 ( « -emission)

If we use the relations,

-

L=Fx(p—Zed)—qr with q:ZD/2

(p—2zed)’ == ——=(r" dr“r_“ -47)

The eigen-value equation for the radial function R(r ) becomes

{— L 4,z )+€(€+1)_q2—E}R(r):O

2m , r° dr 2m , r°

This is Bessel’s equation. The solution which does not diverge at r=0 is:

1

N

Therefore there
where U = \/(f +1/2)*-¢q* >0 is no bound state.
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R(r) = J (kr) wih k= \/ZmAE




Composition of the monopole harmonics and the
spin
The composition is done by uging the C-G coefficients.
Notice the range is ¢ X |q].

w _ |[J+m 1 Jj—m 0
jom 2—qu,j1/2,m1/2(()j+ 2—qu,]'1/2,;11+1/2(1)

2 _ |Jj—m+1 1 j+m+1 0
j,m _\/ 2]+2 Yq,j+1/2,m1/2(0j+\/ 2]+2 Yq,j+1/2,m+l/2 1

When |X|q|+1/2 , two states belong to each |. However to the
smallest |, namely toj=|q| -1/2, only one state belongs
(type-B state). This type-B state is the eigen-state of the

(pseudo-)scalar operatoi7) . In general, the ground state
IS the type-B state.
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"hedgehog™ state of the spin-angular function

In general, the ground state appears in the smallest 7 state, namely in 37

lg] — 1,2, which has the form

— el _
= & ol —1/2,m [

This type-B state i, 18
the elgen-state of the
[paendo- Jscalar operator
& - 7)., in fact

T

|

As it is shown in the fig-
ure, the spin orients to
ointward at all the places,
so it is named Thedge-
hog® state, and therefore
the magnetic moment of
the spin is attracted most

(F - Fiipm = | T

strongly to the direction
af the monopaole, which is
hxed at the origin.
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Monopole-nucleus of spin Y2 (1)

The wave equation is, in which we put q=ZD/2

1

2m

(—iV — Ze d)? -

b(r) (G -7)

2
Zmp 7

v =Evy

where b(]/-) =K,, %(1—3_617” (1_|_ ar+ a2 | 2))

To obtain type-B solutiony =(g(7)/r)

Jom

2
(@) . we need are

(6-7) qu(zn)? =(q/|q |)¢J(-2 The equation for radial function g(r) is

_d_z_ 2_|Q|_Sgn(q)(mA/mp)b(r)_

K
2 2
dr a

g(r)=0

, where k2=-2maE. Tables of the bound states are given in ne:



D

=]
" a |j (type) | n —E v<ri>
1 37.37 eV. 647.7 fm
n 0 |11/2 (A)| 2 1.375x107% eV. 8.57x10° fm
00 ( Cos=37.37 eV. g = 0.3670 )
1 0.1882 MeV. 11.00 fm
p |1/2| 0 (B) | 2 76.046 eV. 347.6 fm
3 0.03069 eV. 27257. fm
0o | (O =0.1884 MeV. , p= 0.8040)
1 1.516 MeV. 3.820 fm
t |1/2] G (B) | 2 58.085 keV. 19.36 fm
3 2.226 keV. 98.89 fm
oo | ( Cou=1516 MeV. , p=1.9263)
1 2178 keV. 79.19 fn
t 1/2] 1 (A) 2 24.366 cV. 748.7 fm
3 0.02725 eV. 7079. fin
00 | (O =2.1783 keV. , = 1.3984)
1 0.2454 MeV. 7.371 fm
*He| 1 |1/2 (B) | 2 2.7413 keV. 70.36 fm
3 30.047 eV. 672.15 fm
o | ( Ce =0.2502 MeV. , p= 1.3921)
“ d [1/2]1/2 (A) ( no bound states = —i 0.360 ) 17




j (type) | n o /1 <r>
1 0.8003 MeV. 5.728 fm
1/2 (A) | 2 1.115 keV. 153.97 fm ||
3 1.542 eV. 4139.3 fm
oc | ( Coe =0.8040 McV. , pu=0.9545)
1 2.4065 MeV. 3.666 fm
p 1/2 (B) | 2 15.457 keV. 47.70 fm
I 3 098.231 eV. 598.42 fm
o< | ( Co =2.4322 MeV. = 1.2421 )
1 1.366 MeV. 2.779 fm
t 1/2 (B) | 2 0.5479 MeV. 8.464 fm
3 57.766 keV. 926.31 fm
oc | ( Co =5.4085 MeV. , p= 2.7697)
i 1.203 McV. 4651 fm
t 3/2 (A) | 2 73.162 keV. 19.20 fm
3 4.2423 keV. 79.88 fm
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( Cs =5.4085 MeV.

p= 2.7697 )

oc
1 1.203 McV. 4.651 fm
t 3/2 (A)| 2 73.162 keV. 19.20 fm
3 4.2423 keV. 79.88 fm
oc | ( Oy =1.2696 McV. , p=22042)
1 0.5342 eV. 3169.1 fm
t 5/2 (A)| 2 8.465x10™8 eV. 7.9610%x10°% fm
oc | (Coo=0.53418 eV. , p=0.4013)
1 1.063 MeV. 4.596 fm
SHe 3/2 (E) 2 51.115 keV. 21.50 fm
3 2.3239 keV. 100.9 fm
I oc | ( Co =1.1259 MeV. , p=2.0312)
1 508.205 eV. 152.8 fm
d 0 B) |2 0.33595 eV. 5910.0 fm
oc | (O =575.970 eV. |, pe=0.8450 ) |

19



Monopole-nucleus of spin ¥2 (2)

In the domain where ar >>1, we can regard b( r ) as a consta
And its solution is a Bessel functions. The damping solution is

Starting from r=0, g( r) is solved numerically up to the large r

region
where its logarithmic derivative is matched to that of the above

K-

-EK (x)= —= 1 n(log 2 agT(1+i )j+0(x)

e nh [ D(L i) | s

-Kix) pscillafes, and is matched to g(r) repeatedly. For small «
—E£,=C, e><p[—2ﬂ(n_1)] and <r,12>:g L+ p”)

, In which n is a positive integer and is the principal guantum pumkt



Three Jacobian coordinates of three-body system.

Gaussian expansion method (GEM)
Let us consider Schrédinger equation:

[T+VO@)+VP () +V9 @) -E1Y,, =0

The total wave function is a sum of amplitudes of three rearrangement channels c=1--3
c=1 c=3
¥, =0, R)+ DD (r,,R)+ D P (r,, R,)
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Gaussian expansion method (GEM) (2)

Each amplitude is expanded in terms of the Gaussian basis functions written in
Jacobian coordinates.

CD (;134 (rc’Rc) - Z An(SZ)C,NCLC[ganiEC(FC) ¢]€ch (Rc)]JM (C = 1_ 3)

nclic 'Nch
where

B (F) = 0,1 (1Y, (F), ¢ (r) =N, r" expl -v,r’] (n=1-n.,),
l//lgf;LM (ﬁ) = l/fffL (R)Y,y (1%)’ l//]iL (R) = NNLRL exp[ _ANRZ] (N =1-N )

The Gaussian range parameters are chosen as the geometric series:

_ 2 _ n-1 -1 _
v =1/r", r =rna (n=1-n_),

Ay =1/R:, R, =R A" (N =1-N_,).

Eigenenergy E and the coefficients,) y , are determined by the

Rayleigh-Ritz variational principle.

22



Magnetic monopole (*e) plus deuteron system

(1)

Choose N: : proton, N:: neutronand N:: *e with infinite mass and fix it at the ol

Because of the infinite mass, Jacobian coordinates c=1 and c=2 become identical,
and so there remains only 2 coordinates: (r:, r:) and (r, R) as shown below.

I R
)

*e *e
c=1 C=3

Total number M of the coefficients is
_(c=1) (c=1) (c=3) (c=3)
M_nmax 'Nmax T 7o 'Nmax
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Magnetic monopole (*e) plus deuteron system

(2)
There are 8 parameters to be determined by minimizing the eigen-value E, which
are (vi, vil/lva, A1, A1/ A:2) forc=1andforc=3. To fix the parameters we m

compute the linear simultaneous equation repeatedly, by choosing points in the
8-dimensional parameter space .

Although potentials of *e-p,*e-n and the nuclear force between p and n are known,
It is not necessary to use the precise forms of the potentials, instead we can adopt
the Gaussian type. With the Gaussian or the Yukawa type potentials , we can write
the matrix elements in the closed form.

It is well-known that the low energy scattering amplitude is characterized by a few
parameters such as the scattering length and the effective range and not by the
details of the potential form. Our *e-p Gaussian potential is fixed to produce the
binding energy and the orbital of the *e-p system . Likewise, the parameters of
the p-n Yukawa potential of the spin-triplet state is determined from the binding
energy of the deuteron.

Concerning the *e-n Gaussian potential we adopt the same potential as *e-p exce|

a factor A to control the strength, which changesin - A =0.~1.. 5



Monopole-nucleon potential is:
2 2 . 2
V, ,(r)=Gexpl —cr°] and V, (r)=-AGexp[ —cr°] with c¢=2u;

Nuclear potentials of spin-triplet state are:

o Vi (r)=-G_expl —u_.r]lr

o Va(r)=—-g . expl—p rllr—g,expl —u,rllr+G,expl—u,r]lr
In Vs, the = and o exchange terms are those of the one-boson exchange model,
other hand, the o term represent the inner repulsive core whose coefficient G is

determined by the binding energy of the deuteron. V. is the one term potential of
one-pion exchange range and G is determined by binding energy of d.

Linear simultaneous equation with 128x128 matrix is solved, to get the lowest eigen-value
The result of the variational calculations of A =0 and A =1 cases are;

(4 =0) (1=1)

for V. E=—-4.47 MeV. E=-4.20 MeV.
for Vs E=-4.78 MeV E=—-4.34 MeV.



