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spin MA/mp κtot  <r²>

n 1/2 1.0014 -
1.91304

0.811 fm.

p 1/2 1.0000 2.7928 0.811 fm.

d 1 1.9990 0.8574 4.316 fm.

t 1/2 2.9937 2.98 2.0
fm.³He 1/2 2.9932 -2.13 2.0
fm.⁴He 0 3.9713 0 1.61
fm.

Magnetic moment of the nucleus is κtot (e/2mp). So in the magnetic
field B,

it has the potential V= -κtot (e/2mp) σ · B . In particular when B is the
magnetic
Coulomb field produced by the monopole *e, namely B=*e /r², the
potential becomes . Therefore the
nuclei whose magnetic moment directing outside are attracted to the
monopole, and gather around *e. At the temperature T the Boltzmann
weight is exp[- V/ kB T].
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The equation of motion of the charged particle Q in
The magnetic Coulomb field：
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If we make the vector product r  of this equation,
we obtain:
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So what is conserved
in time is : cQQqwithrqrmrL /*ˆ  

Angular momentum of the system where the
electric charge and magnetic charge coexist (1)
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Angular momentum of the system where the
electric charge and magnetic charge coexist (2)

Density of the momentum of the electromagnetic field stored
in space is:
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If we substitute E and H by the Coulomb fields, the total angular
momentum of the electromagnetic field becomes:
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The charge quantization condition (1) (Dirac)
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From this condition, the world with the magnetic monopole
has the following characteristic features:

➀ charge Q is discrete, and its pitch is (ħc /2 *e) :
necQ )*2/( , where *e is the smallest magnetic charge.

[lemma] the pitch (ħc /2 *e) is common to all the charged
particles. In particular, the charges of the proton and the
electron must coincide precisely up to sign.

Because of this property, monopole is a favorite particle of the particle physicists ,
The monopole search is still continued. See home page of the particle data group:
http://pdg.lbl.gov .
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② The Coulomb force between monopoles is super-strong :
*e²/ħc =137/4. This value is derived from the charge

quantization condition *ee/ħc =1/2 and e²/ħc =1/137.

[lemma] The strength of the interaction between the magnetic
monopole and the nucleon is the same order of magnitude as

that of the nuclear potential.

（ex.）let us compare the strengths of the potential of *e
and p,
and the nuclear potential of one-pion exchange. More

precisely:
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The charge quantization
condition (2)
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r 1 f m. 2 f m. 3 f m.

-28. MeV. -7.0 MeV. -3.1 MeV.

- 7.7 MeV. -1.91MeV. -0.63MeV.

Since κp=2.79 > 0 , for the proton the spin orienting
outward
, namely the eigen state of (σ·r)/r with +1 eigen-value,
is
attractive. If we use *ee=1/2 , the two potentials become
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Eigen-value problem of the monopole-nucleus system

When a nucleus has large magnetic moment, it is expected
to form the bound state with the magnetic monopole, if the
spin of the nucleus orients properly.

When the magnetic charge is D*e, the Hamiltonian of *e-N is
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, where A is the vector potential, whose rotation is the
magnetic Coulomb field. And f (r) is the form factor of the
nucleon. More generally, by using the nuclear potential V, the
Hamiltonian of the monopole-nucleus system is written as:
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The vector potentials for the magnetic Coulomb field

If we remember the formula in the spherical coordinate system:
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The vector potentials,
which
are regular in the north
and
south hemispheres, are:00  AA r
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These two vector potentials are
con- nected by the gauge
transformation：
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Monopole harmonics
When we search for the wave function in the form of a product ψ=R( r ) Y(θ,
the monopole harmonics appears in place of the well-known
spherical harmonics . Instead of the Legendre bi-function, the
Wigner function d(θ) of the rotation matrix appears：
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This function has a new index q, which is the magnitude of the extra angular
Momentum, in addition to ℓand m. The ranges of ℓand m are
ℓ=|q|, |q|+1, … and m=-ℓ, -ℓ+1,… , ℓ respectively.

The monopole harmonics in the north and south hemisphere differs by the
phase factor exp[-i2qφ] as expected in the gauge theory.
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Monopole-nucleus of spin-0 (α-emission)
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The eigen-value equation for the radial function R(r ) becomes:
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This is Bessel’s equation. The solution which does not diverge at r=0 is:
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Therefore there
is no bound state.

If we use the relations,
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Composition of the monopole harmonics and the
spin

The composition is done by using the C-G coefficients.
Notice the range is ℓ |q|.
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When j|q|+1/2 , two states belong to each j. However to the
smallest j , namely to j=|q| -1/2 , only one state belongs
(type-B state). This type-B state is the eigen-state of the

(pseudo-)scalar operator . In general, the ground state
is the type-B state.
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Monopole-nucleus of spin ½ (1)
The wave equation is, in which we put q=ZD/2
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, where κ²= - 2mAE. Tables of the bound states are given in next page.
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Monopole-nucleus of spin ½ (2)
In the domain where ar >>1 , we can regard b( r ) as a constant,
And its solution is a Bessel functions. The damping solution is:
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Starting from r=0, g( r ) is solved numerically up to the large r
region
where its logarithmic derivative is matched to that of the above
K-
Bessel. However if κtot is large, ν must become pure
imaginary iμ,
then infinitely many bound states appear. If we see the
formula:
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, in which n is a positive integer and is the principal quantum number.
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Three Jacobian coordinates of three-body system.

Gaussian expansion method (GEM)
Let us consider Schrödinger equation:
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Each amplitude is expanded in terms of the Gaussian basis functions written in
Jacobian coordinates.
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The Gaussian range parameters are chosen as the geometric series:
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Eigenenergy E and the coefficients are determined by the
Rayleigh-Ritz variational principle.

Gaussian expansion method (GEM) (2)
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Magnetic monopole (*e) plus deuteron system
(1)

Choose N₁: proton, N₂: neutron and N₃: *e with infinite mass and fix it at the origin.

Because of the infinite mass, Jacobian coordinates c=1 and c=2 become identical,
and so there remains only 2 coordinates: (r₁, r₂) and (r, R) as shown below.
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Magnetic monopole (*e) plus deuteron system
(2)

There are 8 parameters to be determined by minimizing the eigen-value E, which
are (ν₁, ν₁/ν₂, λ₁, λ₁/ λ₂) for c=1 and for c=3. To fix the parameters we must
compute the linear simultaneous equation repeatedly, by choosing points in the
8-dimensional parameter space .

Although potentials of *e-p,*e-n and the nuclear force between p and n are known,
It is not necessary to use the precise forms of the potentials, instead we can adopt
the Gaussian type. With the Gaussian or the Yukawa type potentials , we can write
the matrix elements in the closed form.

It is well-known that the low energy scattering amplitude is characterized by a few
parameters such as the scattering length and the effective range and not by the
details of the potential form. Our *e-p Gaussian potential is fixed to produce the
binding energy and the orbital of the *e-p system . Likewise, the parameters of
the p-n Yukawa potential of the spin-triplet state is determined from the binding
energy of the deuteron.

Concerning the *e-n Gaussian potential we adopt the same potential as *e-p except
a factor λ to control the strength, which changes in - λ= 0. 1. .
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Monopole-nucleon potential is:
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Nuclear potentials of spin-triplet state are:
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In V₃, the π and σ exchange terms are those of the one-boson exchange model, on the
other hand, the ω term represent the inner repulsive core whose coefficient G is
determined by the binding energy of the deuteron. V₁is the one term potential of the
one-pion exchange range and G is determined by binding energy of d.

The result of the variational calculations of λ=0 and λ=1 cases are:

for V₁ E= −4.47 MeV. E= −4.20 MeV.
for V₃ E= −4.78 MeV E= −4.34 MeV.

(λ =0) (λ=1)

Linear simultaneous equation with 128x128 matrix is solved, to get the lowest eigen-values.


