REPORT ON ELECTROLYSIS EXPERIMENTS AT ENERGETICS TECHNOLOGIES

I. Dardik, T. Zilov, H. Branover, A. El-Boher, E. Greenspan, B. Khachaturov, V. Krakov, S. Lesin, A. Shapiro and M. Tsirlin

> Energetics Technologies P.O.Box 3026 Omer Industrial Park Omer, Israel <u>lesin@energetics.il.co</u>

Presented at the 8th International Workshop on Anomalies in Hydrogen / Deuterium loaded Metals 13-18 October 2007 Catania, Sicily

1

Introduction

The primary objectives of the Energetics Technologies experimental program are:

(1) Improvement of reproducibility of excess heat generation
(2) Amplification of power and energy gain

(2) Amplification of power and energy gain

The program focuses on electrolytic cells driven by I. Dardik's SuperWaves

Several experimental approaches are being pursued:

- Optimization of Super Wave
- Modify cathode surfaces by special annealing-etching procedures jointly developed with ENEA (Frascati) and the University of Rome
- Modify cathode surfaces by SuperWaves glow discharge etching
- Develop new cathodes
- Electrolysis with ultrasonic wave excitation

Experimental results in each of these research areas are reported along with results from metallurgical and the X-ray analysis of the cathodes.

Successful replications of Energetics heat production was accomplished at SRI and at ENEA (Frascati); results will be presented separately.

ET ELECTROLYTIC CELL

EG is inside a Teflon beaker that is placed inside an isoperibolic calorimeter that is placed inside a thermo-stated water bath (3 cells per bath)

Typical EC cathode

Pd foil -- 50 µm

Annealed at 870°C in vacuum for 1h **Etched:**

- 1) in Nitric Acid 65-67% 1 min
- 2) in Aqua Regia 1:1 water solution 1 min**Rinsed:**
- 1) D_2O four times
- 2) Ethanol 95% twice
- 3) Ethanol Absolute once

Dried:

in vacuum at ambient temperature for 24 h

Electrolyte:

0.1M LiOD in D_2O of low tritium content; 230 ml

SuperWaves formation principles

 $\mathbf{F}_0(t) = A_0 \sin^2(\omega_0 \mathbf{t})$

 $F_1(t) = A_0 \sin^2(\omega_0 t)(1 + A_1 \sin^2(\omega_1 t))$

 $F_{3}(t) = A_{0} \sin^{2}(\omega_{0} t) [1 + A_{1} \sin^{2}(\omega_{1} t)(1 + A_{2} \sin^{2}(\omega_{2} t)(1 + A_{3} \sin^{2}(\omega_{3} t)))]$

Typical SuperWave

7

Reproducibility

		Excess Heat	
Number of experiments by category	Nº of exp.	Nº of exp.	% of giving EH
50 microns Pd foil - regular*	98	16	16
50 microns Pd foil* - optically tested**	20	3	15
Glow discharge etching	21	10	50
PdNi alloy	16	3	19
Multilayer ^{***} Pd/Me(MeO)/Pd [Me = Metal]	25	6	24
Single Wall Carbon Nano Tubes Pd composite***	59	11	19
Total	253	49	19
US excited electrolysis	29	17	59

*samples prepared by Dr. V.Violante et al

**samples tested by Prof. C.Cibilia et al

***samples prepared by Dr. A.Lipson et al.

Target - Excess power like in Exp. # 64a

Excess Power of up to 34 watts; Average ~20 watts for 17 h

Power

SEM-EDS analysis of foil # 64 vs. 63

Surface of Pd foil after rolling and annealing at 870°C

foil #64 (EH) many "black spots" foil #63 (no EH)

View of typical black spot on # 64 and its composition

SEM-EDS

Elemen	t Wt %	At %
C	35.77	52.48
0	26.19	28.84
Na	4.92	3.77
Al	0.43	0.28
Si	1.05	0.66
Pt	0.39	0.04
S	1.44	0.79
Cl	10.68	5.31
Pd	2.55	0.42
K	11.07	4.99
Ca	5.52	2.43
Total	100.00	100.00

11

Cathode surface modification

An attempt was made to create cathode surface similar to that of foil #64:

- embed "black spots" on the surface using special rolling procedure
- anneal under similar condition
- find the right etching procedure
- specify the surface properties by an optical method

Foil type	Nº of experiments	№ of giving EH	% of giving EH
50 microns Pd foil - regular	98	16	16
50 microns Pd foil - optically screened	20	3	15

• Unfortunately, no difference has been found!

• Power gain is relatively low (10-15%)

Glow Discharge etching – Statistics

First Series

Gas	<pre># of significant* experiments</pre>	# giving EH	% of Power gain	R/R ₀
Argon	1	1	10-20	peak
Argon-Oxygen	0	0	n/a	n/a
Deuterium- Helium	5	2	17-20	1.93-1.32
Deuterium	5	1	25-75	1.87-1.26
Helium	2	1	8-10	1.88-1.62

Total

13

5

38%

Recent Series

Gas	# of significant [*] experiments	# giving EH	% of Power gain	R/R ₀
Deuterium	8	5	10-25	1.95-1.22
Total	8	5	62.5 %	

Total

*Experiments without Glow Discharge induced defects.

13

Glow Discharge etching – tremendous surface restructuring

Exp.#141 after deuterium GD etching

Commercial alloy 5Ni95Pd

High loading for NiPd alloy

*) F.A. Lewis, I.Lewis and S.G.McKee "Correlation of the relationships between hydrogen content, hydrogen chemical potential and electrical resistivity for palladium alloy-hydrogen systems: possible catastrophe theory representation of the relationships". Journal of the Less-Common Metals, 101(1984) 503-521

Kinetics of deloading outside cell

Estimated D/Pd atom ratio as a function of time after shut down of the electrolysis experiment: 1-Pd-5Ni alloy (Exp. #449), 2-Pd.

Exp.#449 – 5NiPd alloy

Time

19

Multilayer structure

20 Pd substrate 50 μ m foil coated with 5-7 layers of PdO_x. Ni or Re alternating with 6-8 layers of Pd. Top layer is always Pd.

Exp.#375 – multilayer with Rhenium

Composite Pd/Carbon Nano Tubes (SWCNT)/Pd

Single wall Carbon Nano tubes (SWCNT)

Series #	1	2	3	4	6
Manufacturer	CNI (old)	CNI (old)	Helix	Alfa Aesar	CNI (new)
Diameter, nm	1.1-1.2	1.1-1.2	1.1-1.2	1.1-1.2	1.1-1.2
Length, µm	1-2	1-2	0.5-40	10-20	1-2
Purity, %	95	95	90	>96	95
Adhesion	bad	good	very bad	excellent	excellent
Number of experiments	4	11	13	16(tested 12)	16(tested 8)
EH giving experiments	3	4	3	0	0
% giving EH	75	36	23	0	0

SWCNT opened by special etching procedure

Exp.#357 – Carbon nano tubes from 1st series

Electrolysis with ultra-sound excitation

Schematic view

Electrolytic cell for ultra-sound excitation setup A & B

Electrolysis with ultra-sound excitation - Statistics

Setup type	Year	Calori meter	Thermo- stated	# of exp.	# giving EH	% giving EH
Α	2006	no	no	6	4	67
	2006	yes	no	13	6	46
В	2007	yes	no	5	5	100
	2006	yes	yes	2	0	0
C	2007	yes	yes	3	2	67
		Total		29	17	59

Observations:

- extremely high loadings ($R/R_0 = 1.47-1.43$) applying very low current densities (not higher than 10 mA/cm2).
- ability to stay loaded in open air during 1-12 weeks (stable β phase)

Setup with flow calorimeter (Setup B)

Exp.#ETUS1-15; calorimeter not thermo-stated (setup B)

26 days of run

Thermo-stated E-US cell with flow calorimeter (Setup C)

Exp.#ETUS3-5 in Setup C – "heat after death"

Experiment ETUS3-05

Loading Path

The most recent experiment ETUS3-6; Setup C

32 days of run

Exp.#ETUS1-17; calorimeter not thermo-stated (setup B)

"Heat after death" – heat generation during 11 h after termination of loading

ETUS3-6 surface after experiment SEM image magnification x1000

Non-metallic contaminations on the cathode surface

Comparison of ETUS3-6 and ETE-64 (no US) surface after experiment – both gave EH SEM image magnification x4000 and x8000

³Strongly pitted surface

Plastic deformation

Conclusions

- Highest reproducibility is obtained with ultra-sound excitation. Need to optimize application of US.
- First series of Pd/SWCNT/Pd sandwich targets had high reproducibility. Need to find comparable SWCNT.
- Also promising are Pd foils that underwent etching using glow-discharge with deuterium
- Significant "Heat-after-Death" was obtained in 2 experiments with ultra-sound excitation and with Pd/SWCNT/Pd sandwich targets. <u>It is suggested that</u> <u>SuperWaves exposure could create a long-term effect</u> (memory) in the cathode in the form of spontaneous lattice oscillations that result in the heat release.

Acknowledgement

This work was funded by Mr. Sidney Kimmel