

Andrei G. Lipson

Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119991, Russia

7-th International Workshop, Asti 09/23-25, 2006

Introduction I- Expected Sources of Radiation Corrosion of First Wall

- First wall/divertor of TOKAMAK is bombarded by intensive beams of keV charged particles (d+, t+, He4++, He3++) resulting in sputtering/erosion.
- ITER materials are bombarded by high intensity 14 MeV neutrons from DT reaction caused bulk radiation damage.

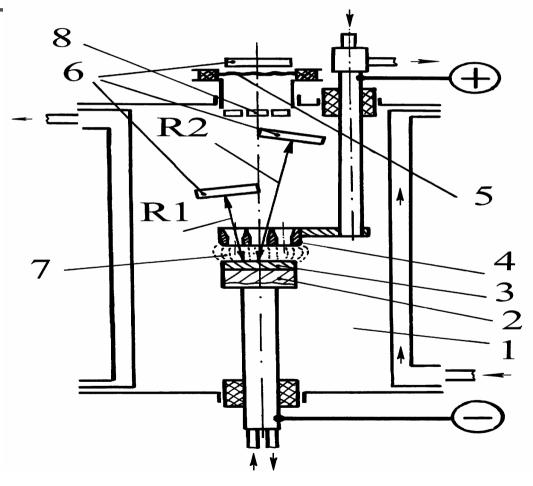
Introduction II- Possible LENR contribution to First Wall damage

- LENR effects could also affect the processes at the first wall and divertor of TOKAMAK. Now LENR are not taken into account as a possible source of radiation damage in thermonuclear reactors.
- What kind of LENR effects may potentially to destroy the first wall?
- DD/DT reaction enhancement producing excessive energetic He-4 and He-3 (blistering).
- Low energy He⁴ from DD reaction (if any in W or St. steel) diffusing into the bulk.
- Soft X-ray deposition at the metal surface sputtering increase

Enhancement of DD-reaction in metal targets at low deuteron energy $(1.0 < E_d < 10 \text{ keV})$

- Most metals show enhancement of DD-reaction yield at E_d << 10 keV compared to the standard yield obtained by extrapolation of the DD-reaction crosssection to these E_d (see accelerator experiments: F. Raiola et al., Nuclear Physics, A719, 61C (2003), J. Kasagi et al., J. Phys. Soc. Jpn., **71**(12), 2881 (2002)).
- Recently, high-current glow discharge measurement showed strong enhancement of DD-yield – about 9 orders of magnitude at E_d = 1 keV in Ti target (A. Lipson et al., JETP, **100**, 1175 (2005).

Parameter	I, range	E _d (lab), keV, range	W _{max} , [W]	P, mm Hg	T,K, target	E(D ⁺) spread
*High Current Accelerator	10-400 μA	100.0- 2.5	2.0	5×10 ⁻⁷ , vacuum	100-350	± 1.0%
**Pulsed Glow Discharge	100-600 mA	2.5- 0.40	200.0	2.0-10.0, D ₂	200-1000	± 10.0%



Comparative parameters of the edge plasma flux (ITER) and high-current glow discharge

- ITER/DEMO: power deposition at the first wall W ~ 1 kW/cm²; at ion temperate T_i ~ 0.5-1.0 keV, the flux of bombarding ions with the energy E_i ~ 1.0-2.0 keV would be J_i ~ 0.5-1.0 A/cm², T ≥ 800 K
- High current pulsed glow discharge (PGD) in D₂ at p ~ 0.5 -9.0 mm Hg: pulses 0.2-1.0 ms duration (rising time < 1.0 μ s), E_d ~ 0.5 -2.5 keV, J ~ 0.2 -2.0 A/cm².
- The disadvantage of a larger energy spread in the PGD case, is outweighed by the higher current and lower voltage capability.
- This GD might well simulate the edge-plasma effects at the first wall of ITER.

Pulsed Glow discharge set up

7-th International Workshop, Asti 09/23-25, 2006

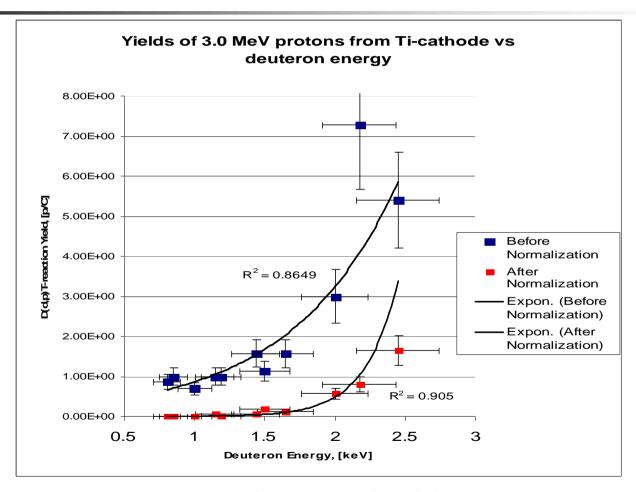
Thick target yield and enhancement of **DD-reaction**

Thick target yield: All deuterons are stopped in the target: $R(E_d) < h(Target)$

 $Y_t(E_d) = \int N_D(x)\sigma(E_{lab})(dE/dx)^{-1}dE$

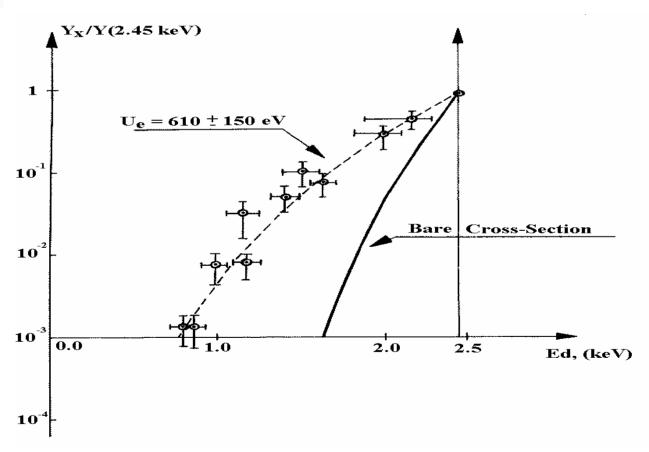
 $N_D(x)$ - D concentration in target,

 $\sigma(E_{lab})$ - cross section at E_{lab} ,

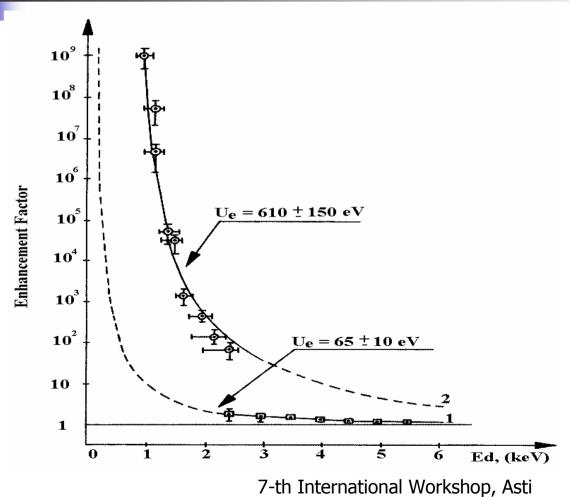

dE/dx – stopping power in target

Enhancement factor:

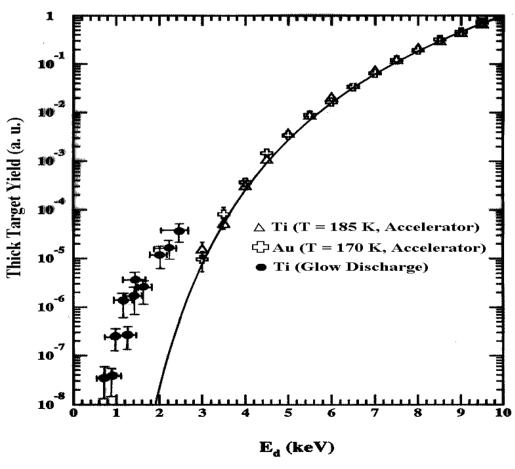
f(E) = $Y_p(E)/Y_b(E) = exp[πη(E)U_e/E]$ $Y_p(E)$ – experimental yield at E=Ed, $Y_b(E)$ – bare yield, 2πη(E) = 31.29 $Z^2(μ/E)^{1/2}$, U_e - screening potential of deuterons in target.


Yields of 3.0 MeV protons before and after normalization to deuterium concentration in PGD with Ti cathode

7-th International Workshop, Asti 09/23-25, 2006

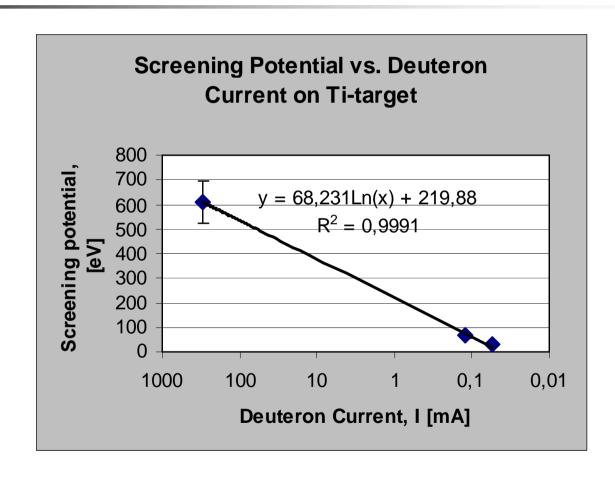

Normalization of PGD 3.0 MeV proton yields to that of 2.45 keV

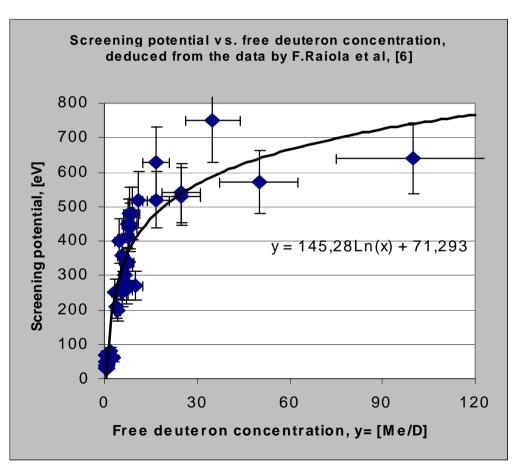
7-th International Workshop, Asti 09/23-25, 2006



09/23-25, 2006

Thick target yields for accelerator (Ti and Au) and PGD (Ti) normalized to that at $E_d = 10$ keV compared to bare yield (solid line)


7-th International Workshop, Asti 09/23-25, 2006


Target/Ref	D^{+} - energy $\Delta E_d(lab)$, [keV]	<i<sub>d>, [mA]</i<sub>	T, [K]	U _e , [eV]	Fit: U _e = 68.23lnI _d + 219.9 [eV]
Ti, accelerator, Raiola	5.0-30.0	0.054	290	≤ 30	20.7
Ti - accelerator, Kasagi	2.5-10.0	0.13	200	65±15	75.2
Ti - GD, Lipson- Karabut	0.8-2.45	310	> 700	610±150	609.2

Screening potential in Ti target is a logarithmic function of the bombarding deuteron flux F: $F = J \sim y=Me/D$

Data are taken from F. Raiola et al, Europhys. J.A**19**, 283 (2004) at T_0 =290K, J_0 =0.03mA/cm², E_d \geq 5keV. Points are consistent with increase in y = Me/D: Hf, Y, Lu, Sc, Gd, Tm, Ti, Ce, Yb, Sm, Zr, Er, Pr, Eu, Ho, La, Ge, C, W, Sr, Ir, Ba, Ru, Au, Ag, Re, Ni, Nb, Ta, Zn, Bi, Mo, Mn, Mg, Cu, Rh, Fe, Pt, V, Pb, Pd, In, Tl.

7-th International Workshop, Asti 09/23-25, 2006

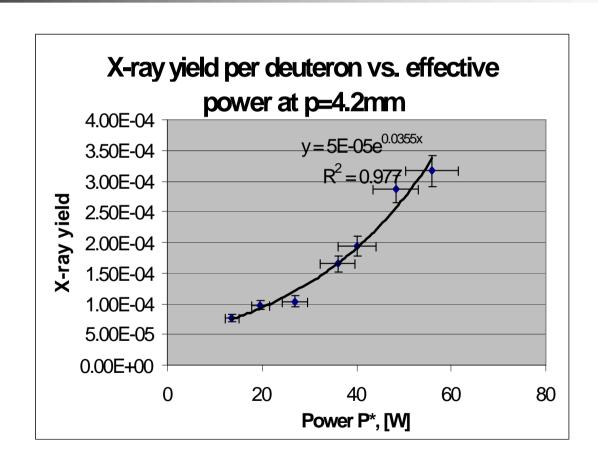
$U_e = (T/T_0)^{-1/2}[a ln(y) + b]$ - semi empirical equation for screening potential vs. free deuteron concentration y (a and b are numerical constants)

- $y = k \times y_0(J/J_0)$, where $y_0 = Me/D$ at $T_0 = 290K$ and $J_0 = 0.03$ mA/cm², $k = \exp(\epsilon_d \Delta T/kBTT_0)$, ϵ_d -activation energy of D+ escape from the surface, $\Delta T = T-T_0$ and k_B Boltzman constant.
- Accordingly the equation for U_e , in ITER case at $J=1.0 \text{ A/cm}^2$ and T=773 K;
- For tungsten: $y_0(W) = 3.45$, $\epsilon_d(W) = 0.05$ eV; $U_e(W) = 1200$ eV. Enhancement: $f_{DT}(2 \text{ keV}) \sim 1.2 \times 10^4$;
- For iron: $y_0(Fe) = 16.7$, $\varepsilon_d(Fe) = 0.06 \text{ eV}$, $U_e(Fe) = 1350 \text{ eV}$. Enhancement: $f_{DT}(2 \text{ keV}) \sim 4x104$.

Rough estimate of DT-reaction intensity at the surface of W and Fe in ITER's First Wall:

 $I_{DT} = J_{d}N_{eff}(T) \times \int_{0}^{E_{d}} f(E)\sigma_{DT}(E)(dx/dE)dE$

• Here J_d – deuteron current density; $N_{eff}(T)$ – effective concentration of bounded D/T in metal at temperature T, captured at depth x: $(N_{eff}(T) = N_0 \exp(-\epsilon_d \Delta T/k_B T T_0)$, where N_0 – D/T concentration at T_0 = 290 K; f(E) – enhancement factor; σ_{DT} – is the bare DT- cross-section; dE/dx – is the stopping power in target calculated with Monte-Carlo code SRIM (J.F. Ziegler and J.P. Biersack, code SRIM 2003)



Numerical integration results

- Taking into account hypothetical First Wall bombardment parameters: $J_d=1.0 \text{ A/cm}^2$, $\langle E_d \rangle = 2.0 \text{ keV}$, T \approx 773K and screening potentials $U_e(W) = 1200 \text{ and } U_e(Fe) = 1350 \text{ eV}$, rough d(t, n) α -reaction rate at the reactor's edge would be: $I_{DT} \approx (1-2) \times 10^4 \text{ s}^{-1}\text{-cm}^{-2}$.
- During one year of operation: DT-reaction alpha fluence Φ_{α} ~ $7x10^{11}/cm^2$ or up to $N_{4He} \approx 10^{15}$ cm⁻³ atoms over depth λ ~ 6 µm for 3.6 MeV alphas from dt-reaction.

X-ray yield per deuteron increases exponentially with the applied deuteron current at $E_d \sim 1.5$ 2.0 keV

Possible Consequences of DD/DT- Reaction Enhancement and X-ray Generation at High Current Low Energy Deuteron Bombardment I

- Vacancy generation over near-surface layer of reactor's edge by MeV alphas.
- The He-atom precipitation along dislocations or capturing by dislocation atmosphere.
- Additional stress and blistering, plasticity reduction even at low level ($\sim 10^{15}$ cm⁻³) 4 He accumulation.
- Sputtering rate may also increase due to vacancy generation and soft X-ray absorption at the First Wall surface

Consequences II

- Reduction in plasticity (e.g. in W) due to the He-4 capture would cause a micro-crack generation over intermediate area between surface and the bulk (1-10 µm depth). Enhancement of First wall fracture and shortening of ITER/DEMO operation time.
- Intense soft X-ray emission at the surface may also enhance erosion of first wall caused by Xray energy deposition in the near-the-surface layer during charged particle bombardment.

Conclusions

- The edge plasma effects at the first wall, including corrosion, would be partially underestimated because the enhancement of DD/DT reaction and accompanying radiation processes at very low deuteron energy are neglected.
- The high current pulsed GD with appropriate cathode materials (W, St. steel) could be a suitable instrument to simulate edge plasma effects at ITER's first wall.