The Conjecture of the Neutrino Emission

from the Metal Hydrides

Xing Zhong Li

Department of Physics, Tsinghua University,

Beijing, CHINA

The 7-th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, Sept. 22-25, 2006, Asti, ITALY

Prediction of Selective Resonant Tunneling

$$\sigma = \frac{\pi}{k^2} \frac{-4W_i}{W_r^2 + (W_i - 1)^2} \quad \begin{array}{l} \text{(Hot Fusion)} \\ \hline \text{Fusion Engng. \&} \\ \hline \text{Design (2006)} \end{array}$$
$$j = \frac{\hbar k}{\mu} \frac{W_i}{aW_r^2 + bW_r + cW_i^2 + d}; \quad \text{(CMNS)}$$
$$W \equiv Cot\delta \equiv W_r + iW_i; \quad W_i^2 = \frac{d}{c}$$

Long Life-Time Resonance of (D,D) or (D,P)

Experimental Confirmation: 3-Body Reaction

1993, Kasagi,
$$d+(\underset{In Titanium}{d+d}) \rightarrow \overset{17 MeV}{p} + \underset{6.5 MeV}{\alpha} + n,$$

1997, Takahashi, $d+(d+d) \rightarrow \underset{(4.75 MeV)}{He^3} + \underset{(4.75 MeV)}{T}$

Life-time of (d+d) Resonance ~ 10⁴ Sec.

$$p + (d + d) \rightarrow p + He^{4}$$

$$19.1MeV + 4.77MeV = 4$$

$$\begin{aligned} \overline{\text{Electron-catalyzed fusion-1}} \\ d+d+e &\rightarrow {}^{4}H^{*} + v_{e} \ (Electron \ Capture) \\ {}^{4}H^{*} &\rightarrow {}^{4}He^{*} + \tilde{v}_{e} + e \\ d+d &\rightarrow {}^{4}He^{*} + \tilde{v}_{e} + v_{e}, (Q = 23.8MeV) \end{aligned}$$

$$\begin{aligned} p+p &\rightarrow D + v_{e} + e^{+} \ (Bethe's \ Solar \ Model) \\ d+d &\rightarrow {}^{4}H^{*} + v_{e} + e^{+} \ (Positron \ Emission) \\ {}^{4}H^{*} &\rightarrow {}^{4}He^{*} + \tilde{v}_{e} + e \\ d+d &\rightarrow {}^{4}He^{*} + \tilde{v}_{e} + v_{e} + e^{+} + e \ (Q = 23.8MeV) \end{aligned}$$

Electron-catalyzed fusion-2

$$p + d + e \rightarrow T^* + v_e \quad (Electron \ Capture)$$
$$T^* \rightarrow {}^{3}He^* + \tilde{v_e} + e$$
$$p + d \rightarrow {}^{3}He^* + \tilde{v_e} + v_e \quad (Q = 5.494 MeV)$$

$$p+d \rightarrow T^{*} + v_{e} + e^{+} \quad (Positron \ Emission)$$

$$T^{*} \rightarrow {}^{3}He^{*} + \tilde{v}_{e} + e$$

$$p+d \rightarrow {}^{3}He^{*} + \underbrace{v_{e}}_{4.472 MeV} + e^{+} + e^{+} + e^{-} \quad (5.494 MeV)$$

$$\overset{6}{}_{6}$$

Figure 1. β radiation from a preliminary run of April 21, 1992 (negligible nobles).

F.G.Will ICCF-4

β-Spectrum

Fig. 2. Bela spectrum of Pd cathode piece after D₂O electrolysis and application of closedsystem analytical method.⁶ Ordinate: Incremental counts per 5-channel interval in 20 minutes.

Fig. 3 Beta spectrum of secondary tritium standard: Tritiated H₂O (1000 dpm) in Beckman scintillation cocktail. Ordinate: Counts per 5 channels per minute.

Fig. 4 Beta spectrum of water-free primary tritium standard supplied by Beckman. Ordinate: Counts per 5 channels per minute. Kamiokande---SuperKamiokande---KamLAND

Sensitivity.

➢ Energy.

Purification of Scintillation Liquid

➢ Volume

Neutrino Emission—Feasibility of Detection

FIG. 1: Schematic diagram of the KamLAND detector.

(1)<u>Sensitivity</u>.

neutrino flux of 10^6 /sec/ cm².

The diameter of **13** meters.

a neutrino source intensity of 6×10^{12} /sec.

"excess heat" power of **6 mW**.

(the **recoil** energy due to the neutrino emission.)

(2)<u>Energy.</u>

solar neutrino, the fission reactor neutrino, the geo-neutrino;

if the energy of the unknown neutrino source is greater then 5 MeV.

 $d + d \rightarrow {}^{4}He^{*} + \tilde{v}_{e} + v_{e}, (Q = 23.8MeV)$

 $p+d \rightarrow {}^{3}He^{*}+\tilde{v_{e}}+v_{e}, (Q=5.494MeV)$

Various Physics Targets with wide energy range

(3) Purification of Scintillation Liquid

impurity is at the level of **10⁻⁵.**

further reduced to **10**-7.

(4)<u>Volume</u>

a factor of **10 to 100** just based on the volumetric effect.

Nuclear Energy with No Nuclear Contamination

Neutron

- Gamma Rays
- Charged Particles
 - α,**(Helium)**;
 - β,**(X-rays)**;
- Neutrino

The Best Nuclear Radiation;

Confirmation of the Nuclear Origin;

Detectable.

Opportunity & Challenge for CMNS

- > 500 Billions Euros, 7 years
- > 10 Thematic Priorities

(Energy, Environment)

- > 4 Countries in EU
- 1 EU Coordinator
- > 1 Industry member
- Volunteer Reviewers

3 among 36 experts of EURATOM(FP-6)

			SWEDISH RADIATION PROTECTION	PUBLIC RESEARCH
BÄVERSTAM	ULF	SE	INSTITUTE	CENTRES
			MTA KFKI ATOMIC ENERGY RESEARCH	PUBLIC RESEARCH
GADÓ	JÁNOS	HU	INSTITUTE	CENTRES
				PUBLIC RESEARCH
IMEL	GEORGE	US	ARGONNE NATIONAL LABORATORY	CENTRES
				HIGHER EDUCATION
NIWA	OHTSURA	JP	KYOTO UNIVERSITY	ESTABLISHMENTS
			NRG (NUCLEAR RESEARCH AND	PRIVATE / COMMERCIAL
O'SULLIVAN	PATRICK J	IE	CONSULTANCY GROUP)	RESEARCH CENTRES
				INTERNATIONAL
ROYEN	JACQUES	BE	OECD NUCLEAR ENERGY AGENCY	RESEARCH CENTRES
VAN LUIK	ABRAHAM	US	US DEPARTMENT OF ENERGY	OTHERS
				PRIVATE / COMMERCIAL
VASA	Ινο	CZ	NUCLEAR RESEARCH INSTIUTE REZ PLC	RESEARCH CENTRES
			FEDERAL OFFICE FOR RADIATION	PUBLIC RESEARCH
WEISS	WOLFGAN	DE	PROTECTION	CENTRES

Cooperation – Collaborative research

10 thematic priorities

- 1. Health
- 2. Food, agriculture and Biotechnology
- 3. Information and Communication Technologies
- 4. Nanosciences, Nanotechnologies, Materials and new Production Technologies
- 5. Energy
- 6. Environment (including climate change)
- 7. Transport (including aeronautics)
- 8. Socio-Economic Sciences and the Humanities
- 9. Security
- 10. Space

This presentation was nothing more than common sense!

Why not get a thorough understanding of the process and

volunteer to be an expert-evaluator yourself !

lt's easy: http://www.cordis.lu/experts/fp6_candidature.htm

GOOD LUCK & thanks for your attention.

CHINA: June - July 2006

Paul JAMET - 63

http://cordis.europa.eu/experts/fp6_candidature.htm 21

Figure 1. The S(E) factor of d(d, p)t for Pt at $T = 20 \,^{\circ}$ C and $300 \,^{\circ}$ C, with the deduced solubilities *y*. The curves through the data points include the bare S(E) factor and the electron screening with the given U_e values.

Table 1. Summary of results^a.

Temperature Effect in Electron Screening

F. Raiola, Ruhr Univ. Bochum, Germany

Material	<i>T</i> (°C)	$U_{\rm e}~({\rm eV})^{\rm b}$	Solubility y°	$n_{\rm eff}{}^{\rm b}$	$n_{\rm eff}$ (Hall) ^d
		T-depend	lence of Pt and C	Co	
Pt	20	675 ± 70	0.06		
	100	530 ± 40	0.06		
	200	530 ± 40	0.05		
	300	465 ± 38	0.04		
	340	480 ± 70	0.04		
Co	20	640 ± 70	0.14		
	200	480 ± 60	0.02		
		T-dep	endence of Ti		
Ti	-10	≤30	2.1		
	50	<50	1.1		
	100	250 ± 40	0.26		
	150	295 ± 40	0.23		
	200	290 ± 65	0.20	1.7 ± 0.7	4 ± 1
		Groups 3 a	nd 4 and lanthan	ides	
Sc	200	320 ± 50	0.11	2.6 ± 0.8	2.2 ± 0.4
Y	200	270 ± 75	0.09	2.6 ± 1.4	2.7 ± 0.5
Zr	200	205 ± 70	0.13	1.1 ± 0.7	(1.1 ± 0.2)
Lu	200	265 ± 70	0.08	2.2 ± 1.2	3.4 ± 0.7
Hf	200	370 ± 70	0.04	4.0 ± 1.5	(3.2 ± 0.6)
La	200	245 ± 70	0.09	2.4 ± 1.4	2.9 ± 0.6
Ce	200	200 ± 50	0.11	1.5 ± 0.7	(1.2 ± 0.2)
Nd	200	190 ± 50	0.08	1.4 ± 0.7	(2.2 ± 0.4)
Sm	200	314 ± 60	0.08	3.5 ± 1.3	10 ± 2
Eu	200	120 ± 60	0.05	0.8 ± 0.8	
Gd	200	340 ± 85	0.08	4.2 ± 2.1	2.2 ± 0.4
ть	200	340 ± 80	0.18	3.9 ± 1.8	
Dy	200	340 ± 70	0.09	4.9 ± 2.0	1.5 ± 0.3
Ho	200	165 ± 50	0.07	0.9 ± 0.5	
Er	200	360 ± 80	0.05	4.3 ± 1.9	6 ± 1
Tm	200	260 ± 80	0.05	2.2 ± 1.4	1.0 ± 0.2
Yb	200	110 ± 40	0.13	0.4 ± 0.3	(0.6 ± 0.1)
			Insulator		
С	200	<50	0.15		

^a For details, see [11].

^b Error contains no systematic uncertainty in the energy dependence of stopping power.

^e Estimated uncertainty is about 20% for the determination of the absolute cross section and thus for the solubility.

^d From the observed Hall coefficient, with an assumed 20% error; the numbers in brackets are for hole carriers.

中国物理学会•2006秋季会议

探测器模块化

近点各两个,远点四个 每个20吨靶质量,总重100吨 直径5米,高5米

三层结构:

Ⅰ. 靶层: 掺钆液体闪烁体
 Ⅱ. 集能层: 普通液闪
 Ⅲ. 屏蔽层: 矿物油
 上下端面加反射层
 降低造价
 ⁶ 筒化精构</sub> σ_{vertex} =14cm
 ~200 8"PMT/模块

实验大厅

- 中微子探测器放在 水池中,被2.5米 的水屏蔽
- 水池兼做宇宙线探 测器
- ➡ 水池外围另有一层 反符合探测器
 - RPC
 - 水箱探测器

- 宇宙线在岩石和水
 中产生的快中子可
 以飘移到中心探测
 器,形成本底→两
 层反符合,效率
 >99.5%
- 岩石的天然放射性
 →压低~10⁷倍
- 其它材料如水泥: 价格高、有天然成[®]