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ABSTRACT

The possible existence of fractional quantum states in the
hydrogen atom has been debated since the advent of quantum
theory in 1924. Interest in the topic has intensified recently due to
the claimed experimental findings of Randell Mills at Blacklight
Power, Inc., Cranbury, New Jersey of 137 inverse principal
quantum levels, which he terms the “hydrino” state of hydrogen.
This paper will show that the classic wave equation predicts
exactly that number of reciprocal energy states.

INTRODUCTION:

Intensive laboratory research over much of the past decade at
Blacklight Power and at the Technical University of Eindhoven, see Ref. [2] for a
review, on what has come to be known as the “hydrino” state of hydrogen has sent
theorists scurrying to explain the experimental spectroscopic observations on the basis
of known and trusted physical laws. Jan Naudts of the University of Antwerp, for
example, offers the argument that the Klein-Gordon equation of relativistic quantum
mechanics allows an inverse quantum state.1 Andreas Rathke of the European Space
Agency’s Advanced Concepts Team insists that the classic wave equation cannot produce
square integrable fractional quantum states. 2 Randell Mills of Blacklight Power employs
a theory based on the Bohr concept of a particle in orbit around a much heavier central
mass. 3 Based on the results of the following analysis, Naudts and Mills appear to be
right.
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PRESENTATION:

The classic matter wave equation
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where v is the matter-wave phase velocity.

Calculation is eased by use of the transformation

= cos  (3)

which produces a simplified equation
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where r is the distance of the electron from the nucleus.

Suppression of the time in equation (4) can be achieved by use of the substitution

 = o tie  (5)

producing
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Separation of the space variables can be achieved by the ansatz

 R (7)

where each factor in the product is a function of the variable represented. When
transformation (7) is used in equation (6), and the resulting equation is divided by the
product given, produced is

0
)1(

1
)1(

1121
2

2

2

2

2
2

22

2








































vrr
R

Rrr
R

R






(8)

The term containing the equatorial angle can be separated and shown to be a constant
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resulting in the differential equation
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Solutions of equation (10) are found by

ime (11)

(except for a multiplying constant), where m is the orbital magnetic quantum number
with values 0, 1 , 2 , 3 , ….
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The quantity within braces in equation (8) can now be written as
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which, when both sides are multiplied by , yields
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Multiplying each term by 21  ,
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A solution in the form of the Maclaurin series

l
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leads to
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because coefficients higher than la are zero.

The equation (8) containing the variable r can now be written
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When the value of 2k in equation (16) is substituted in equation (17), obtained is
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which provides
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Multiplying each term by R yields
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and, after extraction of 2r from the bracket, leaves
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The electron spin is found from the series representation

s
s raR  (22)

which produces an electron spin of [- ½] . To obtain the other spin, we employ the series

s
s raR  (23)

which produces spin of [+ ½]
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To obtain inverse energy levels, which is to say below-groundstate energy levels, we
suppress the spin in equation (21) by use of ½arR , which results in
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For circular orbits in the subground region, the orbital angular momentum number l is ½,
which renders the total angular momentum ½l equal to unity. Further, since the
limiting value of the phase velocity is the speed of light c , equation (24) can now be
rewritten as
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The reciprocal quantum energy levels are found from the series representation
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After first and second derivatives are found and placed in equation (25), obtained is
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where p is the index of refraction very near the nucleus. The principal quantum number
n is given by

v
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(29)

Thus the inverse principal quantum numbers begin at 1n and terminate at
137

1
n .

The electron velocity at 1n is 18.2 x 610 m/sec; at
137

1
n , the velocity is c , the

speed of light.

CONCLUSION

The standard wave equation indicates that fractional quantum states exist. The solution is
square integrable, satisfying a fundamental tenet of quantum physics. Mills’ claim of 137
different inverse energy levels seems confirmed, as is Naudts’ relativistic analysis
showing that at least one inverse quantum state in the hydrogen atom exists. This helps us
understand the especially tight bond of hydrogen in metals, such as magnesium, which
requires temperatures in excess of 700K to release the hydrogen. 4
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